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Abstract—In the sensorless speed control of induction 

motors with direct field orientation, the rotor flux and 

speed information are dependent on the observers. However, 

the exact values of the parameters that construct the 

observers are difficult to measure and changeable with 

respect to the operating conditions. When the motor 

parameters are changed and thus different from the preset 

values, the estimated flux will deviate from the real values. 

To make flux estimation robust to parameter variations, a 

flux observer is proposed in the paper. The stability of the 

method is proven by Lyapunov theory. 

 

 

 

I. INTRODUCTION 

Larger industrial applications require high 

performance motion control with four quadrant operation 

including field weakening, minimum torque ripple, rapid 

speed recovery under impact load torque and fast 

dynamic torque and speed responses. Although torque 

and flux are naturally decoupled in DC motor and can be 

controlled independently by the torque producing current 

and flux producing current. If it is possible in case of 

induction motor to control the amplitude and space angle 

(between rotating stator and rotor fields), in other words 

to supply power from a controlled source so that the flux 

producing and torque producing components of stator 

current can be controlled independently, the motor 

dynamics can be compared to that of DC motor with fast 

transient response. To get ideal decoupling, the controller 

should track the machine parameters and for this, various 

adaptation methods have been proposed [1], [2]. 

A. Vector Control 

The implementation of vector control requires 

information regarding the magnitude and position of the 
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flux vector. Depending upon the method of acquisition of 

flux information, the vector control or field oriented 

control method can be termed as: Direct or indirect. In 

contrast to direct method the indirect method controls the 

flux in an open loop manner. Field orientation scheme 

can be implemented with reference to any of the three 

flux vectors: stator flux, air gap flux and rotor flux.  

B. Observers 

Estimation of unmeasurable state variables is 

commonly called observation. A device (or a computer 

program) that estimates or observes the states is called a 

state-observer or simply an observer.  

The estimator which does not contain the quantity to 

be estimated can be considered as a reference model of 

the induction machine. In MRAS [3], in general a 

comparison is made between the outputs of two 

estimators. Kalman filter [4] is another method employed 

to identify the speed and rotor-flux of an induction 

machine based on the measured quantities such as stator 

current and voltage. Kalman filter approach is based on 

the system model and a mathematical model describing 

the induction motor dynamics for the use of application. 

It has the advantage of tolerating machine parameter 

uncertainties. The neural network based sensorless 

control algorithms have the advantages of fault-tolerant 

characteristics. Proposed work is based on full order 

observer with assumed stator current, here stator voltages 

are measurable & rotor angular speed is also measurable. 

Proposed scheme of flux observer [5] uses the observer 

in which poles can be allocated arbitrarily.  

II. FLUX OBSERVER 

A. Flux Observer of Induction Motor 

Let,
rax 1

 ,
qrx 2

, 
drx 3

 ,
qsix 4

, 
dsx 5

, 

a being the speed of the arbitrary reference frame, and 

the excitation qd  axis voltage be 
qsvu 1

and 
dsvu 2

with the load disturbance
LTv  . 
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And load disturbance,  
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Here 
2a , 

3a and 
4a are load parameters these 

parameters are defined as follows, 
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where, 
10 , kk &

2k denotes inertia load, friction and fan 

load coefficient respectively, where
012 kkk  . 

B. Scheme for Flux Estimation 

The flux information is needed in induction machine 

control for the purpose of synchronous angle and 

synchronous speed estimation, flux regulation and torque 

regulation. Accurate flux estimation is very crucial in the 

control of induction motor drives and induction 

generators using vector control or direct torque control 

(DTC). 

In order to have a fast acting and accurate control of 

the induction machine, the flux linkage of the machine 

must be known. It is, however, expensive and difficult to 

measure the flux. Instead, the flux can be estimated based 

on measurements of voltage, current and angular velocity. 

In the sensorless speed control of induction motors 

with direct field orientation [6], the rotor flux and speed 

information are dependent on the observers. However, 

the exact values of the parameters that construct the 

observers are difficult to measure and changeable with 

respect to the operating conditions. When the motor 

parameters are changed and thus different from the preset 

values, the estimated flux will deviate from the real 

values. To make flux estimation robust to parameter 

variations, a flux observer is proposed in the paper. 

System observer structure is shown in Fig. 1. The 

stability of the method is proven by Lyapunov theory. 

 

Figure 1. System observer structure. 

The speed ax1  is taken as ‘constant’. Then the last four 

equations of (1) can be written in steady space form as, 
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Here we have, 
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Input matrix B, 





















b

b
B

0

0

00

00

and output matrix, 











1000

0100
C

 

C. Flux Observer Design 

Let the flux is not measured. The stator current and 

speed both are measurable. And also consider that the 

speed
rx 1

, and then these equations are rewritten in 

the following, 
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Let estimated dynamics of (3.3) be, 
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The error dynamics is obtained by substituting (5) 

from (4), to give, 
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The estimated dynamics of motor becomes, 
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Subtracting (1) from (7) gives, 
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With estimations the equation (2) becomes, 

BuxAx  ˆ̂                          (9) 

Subtracting (9) from (2) gives, 

xAAxxxxe e
ˆˆˆ          (10) 

And 
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Let the observer equation be shown by, 

oGuBuxAx  ˆˆ̂               (12) 

In (12) the observer input is given by ou  along with 

the observer input matrix G [7]. Then subtracting (12) 

from (2) shall lead to the same equation (10) with oGu  

as additional term on the right hand side, and eo Cxu  . 

Then (12) can be rewritten as, 

eGCxBuxAx  ˆˆ̂             (13) 

Subtracting (13) from (2), then the estimation error 

dynamics becomes, 

( )

e e e

e e

x Ax GCx

x A GC x

 

 
                    (14) 

To minimize the estimation error let the Lyapunov 

function [8] be chosen as, 

e

T

e xxV                          (15) 

Then for asymptotic stability and convergence the 

time derivative of V must be negative semi-definite or, 

e

T

ee

T

e xxxxV                       (16) 

Substituting (14) into (16) with 
eo Cxu   shall give, 

e

T

ee

TTTT

e xCGAxxGCAxV )()( 
 

e

TT

e xGCAGCAxV )}(){( 
   (17) 

For stability 0V  it is required to have, 

0)( GCA  i.e. is eigen values should have 

negative real parts. So G is chosen in such a manner that 

)( GCA has the eigen values in negative real part. 

III. SIMULATION AND RESULTS 

In this paper, the state dynamics of induction machine 

with observer is simulated. Simulation models and results 

are explained. And conclusion from results is discussed 

at last of paper. 

The rating and parameter of three phase induction 

motor taken for simulation are given in Table I [9]. In 

this work, Matlab 7.3 simulink is used to simulate the 

state dynamics of motor with observer. 

TABLE I. PARAMETERS OF INDUCTION MOTOR. 

S.

N. 
Parameters of induction motor Value 

1. Stator resistance 262.0  

2. Rotor resistance 187.0  

3. Stator inductive reactance 206.1  

4. Rotor inductive reactance 206.1  

5. Mutual inductance 02.547  

6. Number of poles 4  

7. Moment of inertia of motor and load 206.11 mkgJ   

 

The various coefficient of induction motor dynamic is 

given by, 

4.164,06.68)(

,3932.0

26.2,57.63

,747.5,0006488.0
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Here 2a , 3a and 4a are load parameters These 

parameters are defined as follows, 
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Here, 10 ,kk & 2k denotes inertia load, friction and fan 

load coefficient respectively, where, 012 kkk   

A. Under No Load  

The simulation results under no load conditions are 

shown in Fig. 2 and Fig. 3. Fig. 2 shows observed 

quadrature axis rotor flux and Fig. 3 shows observed 

direct axis rotor flux.And Fig. 3 and Fig. 4 are showing 

the error in quadrature axis rotor flux estimation under no 

load and direct axis rotor flux estimation under no load 

respectively. 

 

Figure 2. Observed quadrature axis rotor flux under no load condition. 

 

Figure 3. Observed direct axis rotor flux under no load condition. 

 

Figure 4. Error in quadrature axis rotor flux estimation under no load. 

 

Figure 5. Error in direct axis rotor flux estimation under no load. 

B. Under Load  

  

Figure 6. Observed quadrature axis rotor flux under load condition. 

 

Figure 7. Observed direct axis rotor flux under load condition. 

 

Figure 8. Error in quadrature axis rotor flux estimation under load. 
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Figure 9. Error in direct axis rotor flux estimation under load. 

The simulation results under load condition (Load: 

step (amplitude 1980) at t = 4 second.) are shown in Fig. 

6 and Fig. 7. Fig. 6 shows observed quadrature axis rotor 

flux and Fig. 7 shows observed direct axis rotor flux.And 

Fig. 8 and Fig. 9 are showing the error in quadrature axis 

rotor flux estimation under load and direct axis rotor flux 

estimation under load respectively. 

IV. CONCLUSION 

This paper has presented a new approach for 

estimating a rotor flux based on the adaptive control 

theory. This approach can lead to a direct field oriented 

induction motor control without speed sensors. The 

influence of the parameter variation on the flux 

estimation can be removed by the proposed parameter 

adaptive scheme. The validity of the adaptive flux 

observer has been verified using simulation. 
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