The Application of a Nanostructured Material in the Fabrication of a P-I-N Diode Chip

Uzoma I. Oduah
University Of Lagos/Physics Department, Lagos, Nigeria
Email: uoduah@unilag.edu.ng, uzoma_i_oduah@yahoo.com

Abstract—This research focuses on the integration of conventional silicon electronics with Nanostructured materials for an improved efficiency in the detection of photons applied in Fibre Optic Communications. The PIN starting material, intrinsic region thickness and packaging technology determines the diode performance. Nanostructured materials are processed using different techniques such as ion beam sputtering, layer-by-layer deposition, Nano Milling/Etching System, spin casting, ion beam deposition etc. This research utilizes the unique effects of the wide range of phenomena offered by Nanostructured materials such as plasmonic enhancement of absorption, ultraviolet light absorption, generation of multiexciton, charge storage in surface and interface traps, and size–based spectral tuning, to improve the functions of the intrinsic region of the P-I-N diode. The traps extend the lifetime of non-circulating carriers thereby increasing gain. The presence of an introduced external electromagnetic field shifts free conduction electrons. Other achieved advantages include a very negligible package parasitic effect, negligible contact resistance, and a package inductance on the order of 0.01nH for the P-I-N diode.

Index Terms—PIN diode, nanostructure, nanoparticles, plasmon resonance, scattering

I INTRODUCTION

In this research the efficiency in the detection of photons using a P-I-N Diode (Positive Intrinsic Negative Diode) applied in Fibre Optics Communication has been enhanced by integration of the conventional silicon electronics with Nanostructured materials as shown in Fig. 2.

Basically, when a P-I-N diode is in the forward bias mode, holes and electrons are injected from the P and N regions into the intrinsic region. These charges do not recombine immediately due to the width of the intrinsic region. Consequently, a finite quantity of charge always remains stored and leads to a lowering of the resistivity of the intrinsic region. Also, the quantity of the stored charge \(Q \) depends on the recombination time, and the forward bias current \(I_F \) described in the equation:

\[
Q \text{ (Coulombs)} = I_F \tag{1}
\]

The resistance of the intrinsic region under forward bias \(R_S \) is described in the equation:

\[
R_S \text{ (Ohms)} = \frac{W^2}{\left(\mu_N \mu_P/Q\right)} \tag{2}
\]

where \(W \) is the intrinsic region width \(\mu_N \) is electron mobility, and \(\mu_P \) is hole mobility as shown in Fig. 1 below.

![Figure 1. P-I-N chip outline](image)

This research utilizes the unique effects of the wide range of phenomena offered by Nanostructured materials such as plasmonic enhancement of absorption, ultraviolet light absorption, generation of multiexciton, charge storage in surface and interface traps, and size – based spectral tuning, to improve the functions of the intrinsic region of the P-I-N diode [1], [2], [3], [4].

II MATERIAL STRUCTURE AND LAYOUT DESIGN

A. Nanotechnology

Nano-silica particles are divided into two categories with reference to their structure namely the Porous particles or P-type and the Spherical particles or the S-type. The p-type nano-silica is characterized by a number of nano porous with the pore rate of 0.611ml/g. However the P-type ultraviolet reflectivity is >85% while the S-type is >75%. Silicon Oxide Nanoparticles ranges between 15-20nm with a white colour. Gold nanoparticles have unique optical properties which makes it suitable for photosensitive detectors [5], [6], [7]. Gold nanoparticles support surface plasmons. Through ionic interaction, nanoparticles were integrated into a silicon substrate. The characterization of the nanoparticles can be achieved through various techniques such as Transmission Electron Microscopy (TEM), Zeta potential, Dynamic Light Scattering (DLS), Solution pH, and Ultra Violet Visible Spectroscopy.
The epitaxial layer fabricated by Molecular Beam Epitaxy has been used in this study. The Responsivity of a photodetector related the electric current I_p flowing in the device circuit to the optical power P incident on it is described by:

$$I_p = \eta e\phi = \eta eP/h\nu \equiv RP \quad (3)$$

where η = quantum efficiency; h = planks constant; ν = frequency of the photon; and ϕ = mean photon flux.

The photoresponse of a photodiode results from the photogeneration of electron hole pairs through band to band optical absorption. The threshold photon energy of a semiconductor photodiode is the bandgap energy (e.g.) of its active region. The photogenerated electrons and holes in the depletion layer are subject to the local electric field within the layer. The electron/hole carriers drift in opposite directions. This transport process induces an electric current in the external circuit [8] as shown in Fig. 3.

B. Surface Plasmon Resonance

Generally, surface plasmons refer to various waves that propagate along the surface of a conductor. Actually, by altering the structure of a metal’s surface, the properties of surface plasmons with respect to their interaction with light can be modified to achieve the desired results [9], [10]. It is therefore possible to achieve light trapping and avalanche multiplication through forming a wavelength - scale texture on the substrate and then depositing nanoparticles to generate large even absorption. The use of noble metal nanoparticles excited at their surface can be illustrated with a point dipole model [17]. Also, the use of gold nanoparticles achieved improved transmission of electromagnetic radiation is as a result of the forward scattering of surface Plasmon.

Surface Plasmon Resonance

The tunable photo-physical attributes of metal nanoparticles can be illustrated with a point dipole model describing the absorption and scattering of light as follows:

$$C_{scattering} = \frac{1}{6\pi} \left(\frac{2\pi}{\lambda} \right)^4 |\alpha|^2 \quad (4)$$

$$C_{absorption} = \frac{2\pi}{\lambda} I_m |\alpha| \quad (5)$$

where α is the polarizability of the particle given by:

$$\alpha = 3V \frac{6p^3}{6m - 1} \left(\frac{6p}{6m + 2} \right)^2 \quad (6)$$

where V = particle volume

C_m = dielectric formation of the embedded medium.

C_p = dielectric function of the particle.

However, at the point when the particle polarizability will be very large is referred as Surface Plasmon Resonance, given by:

$$C_p = -2C_m \quad (7)$$

Consequently, smaller nanoparticles offer light absorption without any scattering losses, whereas larger nanoparticles offer strong light scattering along with absorption. Au nanoparticles offer the desired properties. As gold is a non-magnetic metal, the surface Plasmon wave is polarized as a result of its electromagnetic surface propagation phenomenon. So this condition will create an enhanced evanescent wave with electric field components in all spatial orientation. Surface Plasmon Resonance occurs when the wave vector for the phonon and Plasmon are equal in magnitude and direction for the same frequency of the transmitted waves [19]. Actually, the wave vector and energy match induces a resonant absorption of energy through the light evanescent wave field causing a Plasmon excitation to Surface Plasmon Resonance [20], [21], [22], [23], [24].

The following conditions guided the geometry of the chip: Increasing the width of the depletion layer (where the generated carriers can be transported by drift) increases the area available for capturing light. Increasing the width of the depletion layer reduces the junction capacitance and also the Resistor Capacitance (RC) time constant. However, the transit time increases with the width of the depletion layer. Reducing the ratio between the diffusion length and the drift length of the device results in a greater proportion of the generated current being carried by the faster drift process [25][26][27], [28][29][30]. Consequently, for an optical signal that has a wavelength λ in the range $\lambda_{th} > \lambda > \lambda_c$, the quantum efficiency and the Responsivity can be optimized. The Responsivity is linearly proportional to both the quantum efficiency η and the free - space wavelength λ. So, for $\eta = 1, \lambda = 1.24\mu m$, $R = 1A/W$.

Furthermore, the photoluminescence intensity of Au nanoparticles were also sampled as shown in Fig. 4 and Fig. 5, and observed that the large photoluminescence enhancement is due to the localized enhancement of semiconductor optical absorption through the excitation of surface Plasmon resonances in proximate metal nanoparticles [31][32][33][34][35][36]. The desired improved transmission of electromagnetic radiation is as a result of the forward scattering of surface Plasmon.
polariton modes of Au nanoparticles of 50-100nm [37], [38][39][40].

Figure 3. Enhanced absorption of photons at the intrinsic region leading to a more efficient generation of photocurrent.

Figure 4. Effect of raman shift showing Au nanoparticles with strong surface enhanced Raman intensity at 30nm.

Figure 5. Illustrating the photoluminescence spectra of the nanoparticles on silicon embedded medium at room temperature.

III FABRICATION

As described in Fig. 6, the Ohmic contact layers are produced with Pd/AuGe/Au with dimensions 25nm/55nm/80nm respectively.

Electron Beam technique was applied in the deposition of Pd and Au metals while AuGe were deposited by thermal evaporation process.

IV RESULTS

Resistance of the PIN diode versus DC current is shown in Fig. 7.

The properties of the fabricated P-I-N Diode chip are described in Table I below.

<table>
<thead>
<tr>
<th>TABLE I. THE PROPERTIES OF THE FABRICATED PIN DIODE CHIP.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spectral response</td>
</tr>
<tr>
<td>Peak response</td>
</tr>
<tr>
<td>Rise/fall time</td>
</tr>
<tr>
<td>Diode capacitance</td>
</tr>
<tr>
<td>NEP @ 1200 nm</td>
</tr>
<tr>
<td>Dark current</td>
</tr>
<tr>
<td>1.0mA (max)</td>
</tr>
<tr>
<td>PD Active diameter</td>
</tr>
<tr>
<td>Bandwidth</td>
</tr>
<tr>
<td>Damage threshold</td>
</tr>
<tr>
<td>Bias (reverse)</td>
</tr>
<tr>
<td>Coupling lens</td>
</tr>
<tr>
<td>Coupling efficiency</td>
</tr>
</tbody>
</table>

It was observed that the nanoparticles created traps that extended the lifetime of non-circulating carriers which increased the total gain and thus the efficiency of the PIN diode chip. Also, fractal aggregates of metallic nanoparticles under localized surface Plasmon induces...
higher enhancement of local field amplitudes compared to single particles.

V CONCLUSION

The application of nanostructured material in the fabrication of a P-I-N Diode apart from increasing gain also achieved the reduction in parasitic effects of resistance and inductance by 95%.

ACKNOWLEDGEMENT

My gratitude goes to Prof. E. I. E. Ofodiile, Dean of Faculty of Engineering and Technology, Nnamdi Azikiwe University Awka, Nigeria, and the Photonics Research Group of Physics Department, University of Lagos, Nigeria.

REFERENCES

Uzoma I. Oduah was born in Ogwashi-Uku, Nigeria, in October 31, 1971. He holds both a Doctorate Degree (Ph.D.) in Physics Electronics (2009) and a Master of Technology Degree (M.Tech.) in Physics Electronics (2000) from Nnamdi Azikiwe University, Awka, Anambra State, Nigeria. Furthermore, he specializes in Nanotechnology, Semiconductors Bandgap Engineering, Photonics and Advanced Micro-electronics. He is a lecturer in Physics Department of University of Lagos, Faculty of Sciences, Akoka Campus, Lagos, Nigeria where he is involved in teaching some of the departmental courses in Optoelectronics, Advanced Digital Electronics, Photonics, and Laboratory Practical Demonstrations. He has over 10years research experience garnered from various world class institutions. His previous work experience includes a Business Development Manager, in Telecommunication Group of Spring Bank Plc, 143 Ahmadu Bello way,
Victoria Island, Lagos, Nigeria in 2010 where he rendered Professional Advisory Services to telecommunication multinational companies. His current research work is on carrier mobility enhancement in semiconductor Complementary Heterostructure Metal oxide Semiconductor Field Effect Transistors (CHMOSFET). Dr. Oduah is a Fellow of Materials and Photonics Research Centre (MAPHORC) University of Lagos, Nigeria. He is a member of Biometric Research Professionals and a Member of Institute of Physics (IOPs) International.