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Abstract—This paper presents a 50GHz wireless receiver for 

10Gbps on-off keying (OOK) modulated signals designed in 

28nm CMOS. An in-depth analysis indicates that the energy 

detector has a substantial impact on the receiver 

performance and should be properly taken into account in 

the link budget. The work covers the design of a novel 

50GHz broadband low noise amplifier and its co-design 

with envelope detector and limiting amplifier. The extracted 

simulation results show that the receiver is able to detect a 

10Gbps signal at 10cm distance with a BER of 10-12 while 

consuming only 70mW from 1V power supply. 

 

Index Terms—receiver, OOK, mm-wave, envelope detector, 

Limiting amplifier, CMOS 

 

I. INTRODUCTION 

The complexity of electronic systems is increasing 

continuously. The amount of data elaborated grows on 

daily basis, while the trend of distributed and high-

performance computing is leading to the development of 

new systems with demanding requirements. Multi-

core/multi-node computers necessitate a huge number of 

short-range I/O interfaces with tens of Gbps bandwidth 

capability. However, wired connections such as 

backplanes have limited bandwidth, heavily limiting the 

mechanical design flexibility and raising the costs of 

materials and assembly. In this context, the concept of a 

wireless chip-to-chip connection becomes very attractive, 

promising high flexibility and versatility [1]. 

The mm-wave frequency range, nominally located 

between 30GHz and 300GHz is of great interest in this 

framework [2]-[3]. The spectrum is very broad and still 

unpopulated, allowing allocating bandwidths several GHz 

wide, leading to multi-Gbps communication speed even 

with very simple modulation techniques [4]-[6]. 

Moreover, with a wavelength of less than 10mm, the size 

of the antenna turns out to be very compact, fitting into 

the IC package or the chassis of small devices, allowing 

miniaturization with respect to current wired solutions [7]. 

Though mostly oriented to digital applications, deep 

sub-micron silicon CMOS technology lends itself to 

implementing analog functions at high frequencies: for 
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each step of minimum gate length reduction, a 

corresponding increase in fT is achieved, being in excess 

of 450GHz for 28nm [8]. The System on Chip (SoC)  

approach for an entire analog transceiver in the mm-wave 

range becomes thus very attractive. 

In this paper we address the realization of the signal 

detection into a wireless On-Off Keying (OOK) receiver 

for 10Gbps communications with 50GHz carrier 

frequency. Section II describes the architecture of the 

receiver and the link budget analysis, while section III 

details the main building blocks. Section IV describes 

simulation results, and conclusions follow. 

II. ARCHITECTURE AND LINK BUDGET 

The complete architecture of the receiver is shown in 

Fig. 1. The 50GHz OOK-modulated signal is collected by 

the off-chip patch antenna and delivered to the 

single-ended Low-Noise Amplifier (LNA). Bondwires in 

a ground-signal-ground (GSG) configuration are 

employed to connect the antenna to the LNA input, 

allowing covering distances of several mm with 

negligible signal loss. The output of the LNA is fed to the 

Envelope Detector (ED), which performs power detection. 

Since the structure of the ED requires a differential input, 

an on-chip balun has been interposed to properly convert 

the single-ended output signal of the LNA. A dummy ED 

is connected to the second input of the Limiting 

Amplifier (LA) to improve the power-supply rejection 

ratio (PSRR). The LA amplifies the detected signal and 

drives the off-chip measurement instrumentation through 

the output buffer. 
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Figure 1.  Receiver architecture. 

The proposed OOK system is based on energy 

detection, which makes the front-end non-linear. As a 
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consequence, Friis formula does not apply and the 

computation of the link budget is not straightforward [9]. 

The equivalent model of the receiver in Fig. 2, consisting 

of the cascade of LNA and energy detector, is used to 

calculate the overall receiver equivalent noise figure FRX.  

 

Figure 2.  Equivalent model of the receiver with noise sources. 

In this model, sin is the desired input signal, ns the 

channel noise, namp the input-referred LNA noise and nint 

the aggregated noise of the envelope detector and 

following stages, while GLNA and a2 are the LNA gain and 

squarer gain, respectively. 

The input signal-to-noise ratio (SNR) is given by: 
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where E[] denotes the expected value, Eb the energy of 

the bit, Br the bit rate, N0 the power spectral density of 

the channel noise and B the signal bandwidth. 

Accordingly, the output SNR can be calculated as: 
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Expanding (2) and solving for SNR at the output, the 

equivalent receiver noise figure FRX is: 
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where FLNA is the noise figure of the LNA. Two 

important insights can be pointed out. First, even if the 

receiver is completely noiseless, the SNR degrades by 

6dB. Second, unlike the common linear case, the 

equivalent receiver noise figure FRX depends not only on 

the gain and noise figure of its blocks, but also on the 

input SNR. This is due to the squaring action of the 

energy detector that translates to the output an amount of 

noise proportional to the power of the input signal (see 

Eq. 3). 

In short-range chip-to-chip communications, the 

typical distance to be covered is 10cm. Assuming a 

transmitter output power of 10dBm, reasonable at 50GHz, 

the signal power at the input of the receiver is -34dBm. 

Taking into account 4dB link margin, this translates to a 

minimum SNR of 33dB at the input of the receiver. Since 

at least 17dB of SNR is required to demodulate an OOK 

signal with BER<10
-12

, the overall receiver noise figure 

cannot exceed 16dB. The requirement further tightens to 

10dB after taking into account the squaring action of the 

energy detector. Assuming a maximum LNA noise figure 

of 10dB, the LNA gain needs to be at least 25dB over the 

receiver bandwidth to properly suppress the aggregated 

noise of the squarer and following stages, estimated to be 

σ
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Figure 3.  Communication distance at 10Gbps as a function of LNA 

gain assuming 10dBm transmitted power, 10dB LNA noise figure, 
σ2

nint=500nV2, a2=1 and 4dB link margin. 

Fig. 3 shows the communication distance against the 

LNA gain. As it can be seen, due to the energy detector 

action, the LNA is required to realize a gain greater than 

25dB, while keeping a noise figure around 10dB. 

Targeting these specs over a 20GHz bandwidth around 

50GHz is challenging. At higher LNA gain, only the 

LNA noise figure and energy detector SNR degradation 

limit the link performance. In this context, recognizing 

the detrimental effect of the energy detector on the 

degradation of the receiver SNR is paramount for a 

correct link budget and transceiver operation. 

III. BUILDING BLOCKS 

A. LNA 

Six common source stages two by two stacked in a 

current re-used architecture construct the LNA core. 

Cascaded stages result in large gain while the current re-

use leads to low power consumption. To enable 10Gbps 

communication, in addition to the large gain, a wide 

operating bandwidth of 20GHz is also required. Third 

order inter-stage networks are employed between the 

amplifying stages to achieve a larger bandwidth. The 

frequency responses of the inter-stage matching networks 

are stagger tuned to further extend the overall LNA 

bandwidth.  

To convert the signal from the S. E. output of the LNA 

to the differential input of the ED, a balun is required. To 

correctly operate, the impedance of the two coils should 

be much greater than the load impedance (i.e. the one of 

the gates of the ED in this case), and the coupling factor k 

should as close as possible to 1. However, the electrical 

characteristics of the two topmost thick-copper layers 

available in the back-end of the employed CMOS 28nm 

technology allow a k within 0.8-0.9, while the maximum 

value achievable for the inductances to keep their self-

resonance frequency well above the 50GHz of the carrier, 

is lower than 200pH. Based on these stringent design 

constraints, the two octagonal single-turn 150pH coils 
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where designed to show a k of 0.82 and a self-resonance 

frequency of 85GHz. The resulting 6dB loss of the balun 

needs to be taken into account by the minimum gain 

requirement of the LNA. The balun is very compact, 

occupying 95x95μm
2
 only. 

B. Envelope Detector 

Envelope detector circuits are mainly based on 

exploiting the 2nd order non-linearity of the MOSFET 

operating in saturation to produce an output signal 

proportional to the square of the input. Due to the 

stringent receiver noise requirements, ED gain is a critical 

parameter to maintain high SNR signal and relax the gain 

of the LA, drastically reducing the overall power 

consumption [10]. 

Fig. 4 (a) shows the source-follower based ED, where 

the push-push connection of the pair also nulls the 1st 

order component of the output signal. The main drawback 

of this circuit is the limited gain [11]. To increase the 

gain, an improved version of the one proposed in [12] is 

presented in Fig. 4 (b). The proposed ED combines 

rectification with amplification by means of a class-AB 

biasing of the NMOS input pair. A tunable PMOS in 

triode is employed as a load to accommodate different 

input amplitudes. A cascode transistor has been inserted 

between the push-push pair and the load in order to 

improve the output resistance and thus maximize the 

achievable gain. The output amplitude of the source-

follower based ED Aout,sf and the proposed one Aout,AB are: 
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where gm is the MOS transconductance, RL the load 

resistor, Vov the overdrive voltage and Ain the input 

amplitude. More than 2x improvement in the gain can be 

achieved, strongly preventing the reduction of the SNR 

due to the nonlinear energy detection of the ED. 
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Figure 4.  Source follower based envelope detector (a) proposed 
envelope detector (b). 

C. Limiting Amplifier 

The LA core consists of the cascade of five differential 

stages closed in a DC offset cancelation loop. The output 

buffer drives the measurement setup. The LA core stages 

are realized with differential pairs with cross-coupled 

capacitances for bandwidth extension. No inductive 

peaking has been employed to minimize the area 

occupancy.  

The cascade of n identical gain cells, each one having a 

bandwidth BWc, exhibits an overall bandwidth of 

m n

ctot BWBW 12 /1                   (6) 

where m is equal to 2 for first-order stages and 4 for 

second order stages [13]. In our case, the network is first 

order and thus m is 2. For a certain gain Atot required for 

the multistage amplifier over the bandwidth BWtot, the 

minimum gain-bandwidth product GBWc of the single 

stage is required to be [14]: 

1 1/ 1/2 1
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                 (7) 

The main lobe of the baseband 10Gbps OOK spectrum 

occupies a bandwidth of 10GHz. Since the best 

compromise between SNR and Inter-Symbol Interference 

(ISI) contribution is achieved for a receiver bandwidth 

around 0.7 times the one of the signal, the targeted BWtot 

is 7GHz. Given the required SNR at the output and the 

expected integrated noise, a minimum amplitude of 

400mV is needed, requiring a minimum gain Atot of 36dB 

for the LA. From (7), the best design compromise is 

achieved with 5 stages each one delivering 7.2dB gain 

and 18.2GHz bandwidth, still challenging to achieve in 

the 28nm technology node, especially at large signal. 

Note that in this calculation, the buffer has been 

neglected since the 60fF parasitic capacitance of the 

output pad together with the 50Ω resistance of the BERT 

leads to a bandwidth of more than 50GHz for the last 

stage itself. Since the fourth stage is already working in 

large signal regime even under the minimum input signal 

expected, the fifth core stage has then been changed into 

a fT-doubler architecture to taper through the buffer 

avoiding losses in bandwidth [14]. The schematics of a 

single LA stage and buffer are shown in Fig. 5. 
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Figure 5.  Schematic of the LA stage (a) and the output buffer (b). 

The targeted signal amplitude of 400mV S.E. requires 

8mA to be delivered by the last stage into the 50Ω 
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impedance of the Bit Error-Rate Tester (BERT). To 

minimize the input capacitance required to drive such 

current, a fT-doubler stage has been employed. An open 

drain configuration has been selected to avoid current 

partition with the load resistances of the stage, thus 

minimizing the size of the buffer for the given output 

swing. Two off-chip bias tees bias the stage. 

The offset cancelation loop employs a similar 

differential pair as the core stages. The offset is sensed at 

the input of the buffer rather than the output, since this 

one is open drain and thus its DC gain is equal to zero. 

The feedback is closed at the output of the first LA stage 

in order not to place the 350Ω load resistance of the pair 

directly in parallel with the load of the ED, which would 

seriously degrade its gain. The pole of the loop-filter has 

been set to 450kHz, low enough to avoid significant eye 

closure due to the drop of longest expected run. 

IV. SIMULATION RESULTS 

To verify the performances of the proposed 

architecture, post-layout simulations were performed 

using Cadence SpectreRF. The overall receiver power 

consumption is 70mW from 1V Vdd: 30mW for the LNA 

and 40mW for the envelope detector and limiting 

amplifier. The chip area is 1450x800μm
2
 including pads. 

The simulated conversion gain (S21), input reflection 

coefficient (S11) and noise figure (NF) of the LNA are 

shown in Fig. 6. The LNA achieves a gain of 26dB over a 

bandwidth of more than 28GHz. The S11 is better than -

10dB over the 45-65GHz bandwidth. The NF is less than 

6.8dB across the whole operating band.  

 

Figure 6.  LNA simulated conversion gain (S21), input reflection 

coefficient (S11) and noise figure (NF). 

To assess the link performance, a 10Gbps PRBS32 

bitstream modulated by a 50GHz carrier was fed into the 

balun with a transient noise simulation. The amplitude of 

the input signal was set to -38dBm, i.e. the expected 

value at the input of the LNA when the receiver is placed 

at a distance of ~10cm from the transmitter with 4dB link 

margin. The single-ended eye diagram at the output of the 

LA is depicted in Fig. 7. An SNR better than 17dB was 

simulated, consistent with a simulated BER<10
-12

. 

In Table I, the performance of the receiver is compared 

to the state of the art, assuming 100mW Pdiss of the TX. 

The proposed work shows the highest combination of 

datarate and communication distance employing non-

directive antenna while still keeping low power 

consumption. 

V. CONCLUSION 

A short-range mm-wave 50GHz wireless OOK 

receiver for 10Gbps communication has been presented. 

The receiver was realized in 28nm CMOS technology 

and it consumes 70mW from 1V power supply when 

effectively demodulating a 10Gbps signal at 10cm 

distance with a BER of 10
-12

.  

 

Figure 7.  Simulated single-ended eye diagram with noise, 

corresponding to a communication distance of 10cm. 

TABLE I.  TYPE COMPARISON OF THE PROPOSED SOLUTION WITH 

THE STATE OF THE ART. 

  Datarate Distance GAntenna fcarrier Pdiss Tech 

  (Gb/s) (mm) (dBi) (GHz) (mW) CMOS 

[15] 4 1000 25 60 308 90n 

[19] 1.5 1000 6.5 60 1772 90n 

[12] 1.5 60 5.0 60 286 90n 

[16] 2.5 1000 24 84 327 65n 

[17] 6.0 2000 25 60 230 65n 

[18] 11 50 2.0 60 358 65n 

[20] 2.62 40 0.0 60 1348 65n 

[1] 11 14 4.0 56 70 40n 

This Work 10 100 3.0 50 170 28n 
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