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Abstract—In this paper we present a complex linear 

prediction analysis method for estimating the formant 

frequencies of noisy speech. The proposed method 

effectively utilizes the signal (being the analytic signal) 

which is ignored in the conventional complex linear 

prediction analysis to achieve noise reduction. Also, the 

covariance and forward-backward linear prediction (FBLP) 

methods are compared, and the FBLP method is deployed 

for predictive coefficients estimation in the proposed 

method. Experimental results show that the proposed 

method yields better performance of formant estimation 

when compared to some conventional methods in white 

noise.

 

 

Index Terms—LPC, formant, noise reduction, analytic 

signal 

 

I. INTRODUCTION 

Free resonances of the vocal-tract system are called 

formants. Formants are associated with peaks in the 

smoothed power spectrum of speech [1]. The peak 

locations, that is, formant frequencies play a fundamental 

role in speech synthesis, recognition and compression. 

For example, formant frequencies serve as an important 

acoustic feature and offer a phonetic reduction in speech 

recognition [2] . They are also crucial in the design of 

some hearing aids [3]. From these reasons, we need 

accurate formant frequency estimation from the speech 

signal. Among different formant estimation techniques, 

linear prediction coding (LPC) based methods have 

received considerable attention [4] [5] [6]. 

LPC is the most commonly used technique for speech 

analysis, which can estimate the spectral envelope of the 

voiced speech signal by modeling it by a set of 

parameters closely related to the speech production 

transfer function. The transfer function of the LPC 

modeling is expressed by. 

 ( )  
 

∑    
   

   

                       (1) 

Being an all-pole filter where G is the gain and    are 

the predictive coefficients. 

However, LPC analysis suffers from some drawbacks. 

One of the most famous ones is that the predictive 

coefficients can be accurately estimated and the voiced 

speech signal can also be represented accurately in noise-
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free environment. LPC method, however, becomes very 

difficult to estimate the predictive coefficients in noisy 

environment. The accuracy of the method will 

significantly degrade in the presence of additive noise. 

On the other hand, complex linear prediction coding 

(CLPC) has been proposed [7]. CLPC is the method for 

linear prediction using the complex signal called analytic 

signal. When performing formant estimation, CLPC 

shows results better than LPC. Especially, the difference 

between CLPC and LPC is large in the low frequency 

region. When analyzing the speech signal corrupted by 

additive noise, however, the estimation accuracy of 

CLPC becomes lower than that of LPC. Therefore, noise 

reduction is required to maintain the excellent 

performance of CLPC in noisy environment. 

When implementing CLPC, decimation by a factor of 

2 is needed for the analytic signal. In that process, half of 

the analytic signal is discarded. That is, without using the 

data being half of the analytic signal, linear prediction is 

implemented. In this paper, we present a new method of 

noise reduction by using the lost data when performing 

the decimation in CLPC. The adverse noise which 

corrupts the speech signal is assumed to be white noise. 

We perform an average operation between the two 

signals generated by the decimation so as to obtain a new 

enhanced signal. The new enhanced signal could not only 

emphasis the speech signal but also suppress the effect of 

the corrupted noise. 

The remainder of this paper is organized as follows. 

Section II explains the proposed method. In Section III, 

through experiments, we verify the effectiveness of the 

proposed method by comparing with some other methods. 

Finally in Section IV, we conclude the paper. 

II. PROPOSED METHOD 

In this section, we explain the CLPC method briefly 

and then derive the proposed method. The CLPC method 

performs linear prediction using the analytic signal 

obtained by converting the original signal. 

The analytic signal is one of complex signals in which 

the imaginary part signal is the Hilbert transform of the 

real part signal. It is well known that the real part signal 

and the imaginary part signal have orthogonality. Let the 

observed real signal be  ( )  and let its Hilbert 

transform be   ( ). Then the analytic signal,  ( ), is 

given by 
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Figure 1. Block diagram of proposed method 

 

 ( )   ( ) +  𝑗  ( )                 (2) 

In (2),  ( ) and   ( ) are related by 

 

   ( )  ∑ ℎ(𝑘)∞
𝑘=−∞  ( − 𝑘)             (3) 

where ℎ(𝑘)  is the impulse response of the Hilbert 

transform, which is given by 

ℎ(𝑘)  {
2

𝜋𝑘
𝑠𝑖𝑛2 (

𝜋𝑘

2
) (𝑘 ≠ 0)

0                      (𝑘  0)
              (4) 

The analytic signal has an interesting property in the 

frequency domain. Let the Fourier transform of  (𝑛) , 

 (𝑛) , and   (𝑛)  be  (   ) ,  (   ) , and   ( 
  ) , 

respectively. Then, 

 (  𝑤)   (  𝑤) + 𝑗  ( 
 𝑤) {

2 (  𝑤)   (𝜔 > 0)
0                (𝜔 ≤ 0)

   (5) 

Consequently, the analytic signal does not have the 

negative frequency component, but twice the positive 

frequency component of the real signal [7]. 

Let the speech signal be  ( ). When the speech signal 

 ( )  is passed through an analytic signal transformer 

(AST), the corresponding analytic signal  ( )  is 

generated. Then, the analytic signal is decimated by a 

factor of 2 to expand the spectrum, which is required for 

the CLPC to obtain an accurate estimation result [7] [8]. 

Here two signals,   (𝑛) and  2(𝑛), are generated.  ( ) , 
  (𝑛)and  2(𝑛) are related by 

  (𝑛)   (2 )                     (6) 

 2(𝑛)   (2 + 1)               (7) 

where it is noticed that n and m are positive integers such 

as n = 0,1,2… and m = 0,1,2…. The conventional CLPC 

method [9] uses only the signal  2(𝑛)  to estimate the 

predictive coefficients    However, the proposed method 

uses a new analytic signal  ̂(𝑛) generated by averaging 

  (𝑛) and  2(𝑛) . The new analytic signal can be 

expressed by 

 ̂(𝑛)  
  (𝑛)+ 2(𝑛)

2
                      (8) 

 ̂(𝑛)  
  (2𝑚)+ 2(2𝑚+ )

2
                  (9) 

The analytic signal   (𝑛)  is almost similar to  2(𝑛) 
because the delay between the signals   (𝑛) and  2(𝑛) is 

only  
 

  
 , where fs is the sampling frequency. This 

suggests that  ̂(𝑛) results in 

 ̂(𝑛)  
  (𝑛)+ 2(𝑛)

2
                     (10) 

 ̂(𝑛) ≈  2(𝑛)                           (11) 

In the proposed method we utilize  ̂(𝑛)  instead of 

 2(𝑛). 
In the presence of noise  ( ) , the observed speech 

signal is given by 

𝑦( )   ( ) +   ( )                  (12) 

where  ( ) is assumed to white noise with zero mean 

and variance  2. The analytic signal of the noisy speech 

𝑦( ) can be expressed by 

 𝑦( )   ( ) +  𝑣( )                  (13) 

where z(m) and  𝑣( ) are the analytic signals of clean 

speech and white noise, respectively. Based on the 

decimation by a factor of 2, the noisy analytic signal 

 𝑦( ) is divided into 

 𝑦 (𝑛)    (𝑛) +  𝑣 (𝑛)                         (14) 

 𝑦2(𝑛)   2(𝑛) +  𝑣2(𝑛)                         (15) 

where  𝑣 (𝑛) and  𝑣2(𝑛) are white noise with zero mean 

and variance  2 , respectively, which are uncorrelated 

each other. Even in noisy environment, the conventional 

CLPC method utilizes the  𝑣2(𝑛)  to estimate the 

prediction coefficients   . However, in this case, the 

conventional CLPC method can not reduce the effect of 

the adverse noise. In this paper, we produce the new 

analytic signal  ̂𝑦(𝑛) to estimate the predictive 

coefficients, and set out to reduce the noise effect. 

The new analytic signal  ̂𝑦(𝑛) is expressed by 

 ̂𝑦(𝑛)  
  (𝑛)+ 2(𝑛)+ 𝑣 (𝑛)+ 𝑣2(𝑛)

2
           (16) 

 ̂𝑦(𝑛) ≈  2(𝑛) +
 𝑣 (𝑛)+ 𝑣2(𝑛)

2
            (17) 

As mentioned above,  𝑣 (𝑛)  and  𝑣2(𝑛)  are 

uncorrelated white noise with zero mean and variance  2. 

The variance of the noise component 
  𝑣 (𝑛)+ 𝑣2(𝑛)

2
 in (17) 

results in 
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Φ(
 𝑣 (𝑛)+ 𝑣2(𝑛)

2
 )  

𝜎2

2
                (18) 

where Φ denotes variance. Comparing  ̂𝑦(𝑛) with  𝑦2(𝑛), 

the noise power in the new analytic signal  ̂𝑦(𝑛) becomes 

half of the noise power in  𝑦2(𝑛). Hence, utilizing the 

new analytic signal to estimate the predictive coefficients 

we could reduce the effect of the adverse noise. Fig. 1 

represents a block diagram of propose method. 

In this paper, based on the new analytic signal   ̂𝑦(𝑛), 

we utilize the Forward-Backward Linear Prediction 

(FBLP) method [9] [10], being a developed version of the 

covariance method, to estimate the predictive coefficients. 

As we know, compared with the autocorrelation method, 

the covariance method can estimate more accurate 

prediction coefficients, while it cannot ensure the stability 

of the resulting all-pole filter. However, it is not 

necessary to ensure the stability of the all-pole filter in 

estimating the formant frequencies. In addition, for the 

complex linear prediction analysis, the target signal is 

decimated by a factor of 2 from the original signal. This 

means that the number of the target signal samples 

becomes half. In this case, the FBLP approach is more 

effective than the conventional autocorrelation method 

based approach in [7] to estimate the predictive 

coefficients from the signal with less length.  

In the next session, we verity the effectiveness of the 

FBLP in a short length signal and the superior 

performance of the proposed method. 

TABLE I. EXPERIMENTAL PARAMETER SPECIFICATION 

Sampling frequency 12kHz 

Analysis window Hamming 

LPC order 12 

Additive noise White 

 

TABLE II. AE VALUES FOR SYNTHETIC VOWEL /O/ 

synthetic vowel FBLP(256) FBLP(128) Covariance(256) Covariance(128) 

 

20dB 

 

F1 

F2 

F3 

0.0232 0.0232 0.0224 0.0235 

0.0172 0.0192 0.0177 0.0262 

0.0053 0.0053 0.0026 0.0031 

 

15dB 

 

F1 

F2 

F3 

0.0511 0.0511 0.0511 0.0520 

0.0378 0.0378 0.0378 0.0396 

0.0065 0.0065 0.0065 0.0079 

 

10dB 

F1 

F2 

F3 

0.1085 0.1085 0.1023 0.1433 

0.0606 0.0606 0.0684 0.0696 

0.0128 0.0142 0.0121 0.0175 

 

III. EXPERIMENTS 

A. Covariance and FBLP Methods for LPC 

At first, we investigated the use of the FBLP and 

covariance methods instead of the autocorrelation method. 

Only real valued linear prediction, which is not complex-

valued linear prediction, was conducted. A synthetic 

vowel /o/1 was generated and used for the experiment. For 

                                                           
1
 The synthetic vowel /o/ was generated from an impulsive sequence 

excitation through the transfer function in (1) with the following 

parameters: G = 0.134,   =0.134,  2 =0.97789,   =-1.48396, 

  =1.78023,   =-0.71707,    =-0.73514,   =0.76348,   =-0.12135, 

the performance assessment, we computed the Absolute 

Error (AE) at different noise levels. The AE is defined by 

𝛿(𝑖)  
| 𝑒( )− 𝑡( )|

 𝑡( )
                       (19) 

where   (𝑖) and   (𝑖) are the true formant frequency and 

its estimate of the i-th formant frequency, respectively. 

Table I shows the experimental parameter specification. 

The analysis frame length was set to 256 and 128 data 

samples with 50% overlap. For each noise level, 100 

individual trials to generate white noise were conducted 

and the calculation of (19) was averaged. In Table II, the 

evaluated AE is shown for the performance comparison 

between the FBLP and covariance methods at 

SNR=20dB, SNR=15dB and SNR=10dB. It is observed 

that the FBLP method can keep the estimation accuracy 

when the speech signal is short. Table II suggests that the 

FBLP method can be extended to a complex-valued 

version and the complex FBLP method is suitable for 

complex linear prediction analysis in the proposed 

method. 

B. Results Using Synthetic and Real Vowels 

We investigated the performance of the proposed 

method with the complex FBLP using the synthetic 

vowel /o/ and five real natural vowels. We compared 

experimentally the performance of the proposed method 

with that of the CLPC [7] and INCM [11]  in white noise 

environment. INCM is an iterative noise compensated 

method, in which the estimation of noise power is 

computed by using a simplified noise power spectrum 

estimator proposed by Martin [12]. 

 

Figure 2. LPC spectra for synthetic vowel /o/ corrupted by white noise 
at SNR=10dB 

For each noise level, 100 individual trials to generate 

white noise were conducted again, and the calculation of 

(19) was averaged. In Table III, for the synthesized vowel 

/o/ the evaluated AE is shown at SNR=20dB, SNR=15dB  

and SNR=10dB. It is observed that the proposed method 

is able to provide reduced AE at any SNR. It should be 

noticed here that comparing the column of the proposed 

method in Table III with that of the FBLP method with 

                                                                                              
  =-0.15552,    =1.78143 
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256 samples in Table II, the proposed method with the 

complex FBLP provides more accurate formant 

frequency estimation with reduced AE values. Fig. 2 

shows LPC spectra for the synthetic vowel /o/ corrupted 

by white noise at SNR=10dB. LPC spectra of the 

proposed method are most similar to the true spectrum. 

INCM can not estimate the F3 well. 

Next, we investigated in natural vowels /a/, /i/, /u/ ,/e/ 

and /o/. In the experiment of natural vowels, the true 

frequency   (𝑖) was defined as the estimate of formant 

frequencies obtained by each method in noise free 

environment. The evaluated AE values of formant 

frequencies are shown in Table IV. Table IV shows that 

the formant estimation accuracy of the proposed method 

is significant and holds the best performance regardless to 

SNR. Especially, the estimates of F1 by the proposed 

method provide high accuracy. 

From Tables III and IV, it is commonly observed that 

the proposed method behaves more robustly against noise 

in lower SNR conditions. 

TABLE III. AE VALUES FOR SYNTHETIC VOWEL /O/ 

synthetic vowel Prop CLPC INCM 

 

20dB 

 

F1 

F2 

F3 

0.0090 

0.0093 

0.0032 

0.0089 

0.0095 

0.0103 

0.0193 

0.0163 

0.0137 

 

15dB 

 

F1 

F2 

F3 

0.0162 

0.0104 

0.0086 

0.0265 

0.0123 

0.0143 

0.0213 

0.0131 

0.0239 

 

10dB 

F1 

F2 

F3 

0.0290 

0.0411 

0.0425 

0.0300 

0.0647 
0.0924 

0.0502 

0.0684 
0.1144 

TABLE IV. AE VALUES FOR NATURAL VOWELS 

synthetic vowel Prop CLPC INCM 

 

20dB 
 

F1 

F2 
F3 

0.0446 

0.0347 
0.0032 

0.0577 

0.0525 
0.0104 

0.0687 

0.0495 
0.0138 

 

15dB 
 

F1 

F2 
F3 

0.0588 

0.0421 
0.0671 

0.1354 

0.0638 
0.0632 

0.1314 

0.0595 
0.2032 

 

10dB 

F1 

F2 
F3 

0.0997 

0.0472 
0.0685 

0.1532 

0.1478 
0.0655 

0.1456 

0.0870 
0.2835 

 

5dB 

F1 

F2 

F3 

0.1351 

0.1293 

0.0754 

0.1739 

0.2434 

0.0923 

0.1509 

0.1771 

0.3688 

IV. CONCLUSION 

In this paper, we have presented a new CLPC analysis 

method, in which the signal which is ignored in the 

conventional CLPC analysis is effectively utilized to 

achieve noise reduction. We investigated the performance 

of the proposed method using synthetic and natural 

vowels. As a result, the formant estimation accuracy of 

the proposed method is significant and holds the best 

performance in comparing with that of the conventional 

methods regardless to SNR. 

APPENDIX A  ANALYSIS OF THE ANALYTIC SIGNAL 

In this Appendix, the new analytic signal (18) is 

discussed more. 

The speech signal  ( )  is considered as a 

combination of multiple sine waves. In the same way, the 

analytic signals   (𝑛)  and  2(𝑛)  also have the same 

characteristics. The analytic signals   (𝑛) and  2(𝑛) can 

be expressed by the equations belows respectively. 

   (𝑛)  ∑   𝑐𝑜𝑠
∞
 = (2𝜋𝑖  (2 ) + 𝜃 )          (20) 

 

  2(𝑛)  ∑   𝑐𝑜𝑠
∞
 = (2𝜋𝑖  (2 + 1) + 𝜃 )       (21) 

where f0 = 
 

  
 is the fundamental frequency, T0 is the pitch 

period. The analytic signal  ̂(𝑛)  used by the proposed 

method is generated by averaging   (𝑛)and  2(𝑛). The 

analytic signal  ̂(𝑛) can be expressed by 

  ̂(𝑛)    
  (𝑛)+ 2(𝑛)

2
                (22) 

        ∑   𝑐𝑜𝑠
(2𝜋   (2𝑚)+  )+(2𝜋   (2𝑚+ )+  )

2

∞
 =   

(2𝜋   (2𝑚+ )+  )−(2𝜋   (2𝑚)+  )

2
                      (23) 

          ∑   𝑐𝑜𝑠
( 𝜋   (2𝑚)+2𝜋   +2  )

2

∞
 = 𝑐𝑜𝑠

2𝜋   

2
      (24) 

 ∑   𝑐𝑜𝑠2𝜋𝑖  
∞
 = (2 +

 

2
) 𝑐𝑜𝑠𝜋𝑖                (25) 

The larger the i is, the closer to 0 the value of the 

𝑐𝑜𝑠𝜋𝑖   is. It means that the components of the 

𝑐𝑜𝑠𝜋𝑖  can suppress the spectrum in the high frequency 

region. The effect of the 𝑐𝑜𝑠     is equivalent to play a 

role of low-pass filter in the frequency domain. In this 

case, the locations of formants included in the analytic 

signal  ̂(𝑛) do not change. Therefore, (25) suggests that 

in a noiseless case, the proposed method does not provide 

a performance degradation. 
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