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Abstract—This paper presents Ultra Low Voltage (ULV) 

Low Power (LP) Z Copy-Current Controlled-Current 

Differencing Buffered Amplifier (ZC-CC-CDBA) with 

single voltage supply. The circuit is performed using bulk 

driven (BD) technique and it is capable to operate at ULV of 

0.65V and consumes low power in the micro range. In 

addition to the topology simplicity, the proposed circuit 

offers high linearity and extended output voltage range. 

Eventually, to verify the functionality of the proposed 

circuit, current mode multi-function biquad filter using 

three ZC-CC-CDBAs with two grounded capacitors is 

included as an example of application. The simulations are 

performed in PSPICE environment using the 0.18µm 

CMOS technology from TSMC. 

 

Index Terms—bulk driven, current differencing buffered 

amplifier, filter, low power circuit 

I. INTRODUCTION 

Minimizing the power consumption and reducing the 

supply voltage become essential demands in modern 

portable electronic devices and battery-powered 

implantable and wearable biomedical devices. Since low 

voltage (LV) LP operation either prolongs the battery life 

time or/and decreases device’s size using a smaller 

battery [1]. These requirements boost the efforts of 

designers to propose circuits capable to operate under LV 

LP conditions.

 

 The main barrier in LV LP analog circuit design is the 

rather high threshold voltage of the MOST. Hence 

various techniques have been invented to reduce or even 

remove the threshold voltage from the signal path. 

Among the most interesting techniques are the non-

conventional ones: Bulk Driven (BD), Floating Gate (FG) 

and Quasi-Floating Gate (QFG) MOST [2]-[4].  

The aforementioned non-conventional techniques were 

successfully utilized to build numerous of modern LV LP 

active electronic elements [4]-[24]. Since these 

techniques enjoy the following design advantages: ULV 

LP operation capability, simple circuitry, and extended 

input voltage range. Moreover, their relatively lower 

transconductance value and narrower bandwidth in 

comparison to conventional gate driven MOST (GD) are 

attractive features in some applications, such as 
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biomedical ones, since the amplitude and the frequency 

of the biological signals are extremely low.  

The bulk driven (BD) principle was introduced for the 

first time in 1987 [5]. Although the transconductance of 

the BD MOST is the smallest among the non-conventional 

techniques, it is capable to process AC and DC signals, 

while the capacitively coupled gates of FG and QFG 

MOSTs prevent processing DC signals. Furthermore The 

BD MOST occupies smaller area on chip than FG and 

QFG MOSTs due to their input capacitors [4][17]. During 

the last decade various interesting and effective active 

elements were designed utilizing the BD technique, such 

as operational transconductance amplifiers (OTAs) [4], [6], 

and [7], operational amplifiers [8], and [9], voltage 

followers [10], and [11], second generation current 

conveyors (CCIIs) [12], and [13], current differencing 

external transconductance amplifiers (CDeTAs) [14], 

winner take all circuit [15], differential-input buffered and 

external transconductance amplifiers (DBeTAs) [16] and 

Differential difference current conveyor (DDCC) [17]. 

The current differencing buffered amplifier (CDBA) 

principle was first published in 1999 [25]. Owing to its 

simplicity and capability to operate in current and voltage 

modes, it is considered as universal building block for 

analog signal processing with interesting application 

potentials. The capability of controlling the transfer 

parameters of the CDBA extends its applicability. Thus 

two controlling methods have been proposed: current 

controlled CDBA (CC-CDBA) [26]-[32], and digitally 

controlled CDBA (DC-CDBA) [33]. In several 

applications of the CDBA, There is a need for utilization 

of the output current signal flowing out of the output 

terminal to the working impedance [34]. However, this 

procedure is not easy to be achieved, since any attempt to 

use the output current affects the entire circuit 

performance. Therefore, providing copy of the output 

current is very useful in many applications. This copy can 

be performed by additional high impedance output 

terminal of the CDBA, thus this element can be named Z 

copy CDBA (ZC-CDBA) [35]. The CDBA building block 

has been widely used to design voltage mode or current 

mode filters [36]-[44]. Furthermore, various oscillators 

based on the CDBA were introduced in literature [26]-[28] 

[45] [46]. 
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The purpose of this work is to introduce a new simple 

CMOS structure based on BD technique of the ZC-CC-

CDBA capable to operate with ULV LP conditions. Thus 

the attractive features of this building block can be widely 

employed in LV LP applications. 

This paper is organized as follows. Sect. II presents the 

principle and the internal structure of the novel ULV LP 

ZC-CC-CDBA based on the BD technique. In Sect. III, 

biquad multi-function current mode filter is introduced as 

an example of application. Sect. IV shows the simulation 

results, and Sect. V is the conclusion. 

II. ULV LP ZC-CC-CDBA  

The ZC-CC-CDBA is a five terminal active element; 

two low impedance input terminals (p, n), two high 

impedance output terminals (z, zc), and one low 

impedance output terminal (w). The schematic symbol of 

the ZC-CC-CDBA and its equivalent circuit are depicted 

in Fig .1(a) and (b), respectively. 
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Figure 1.  ZC-CC-CDBA: (a) schematic symbol, (b) equivalent circuit. 

Unlike the well-known conventional CDBA, the input 

voltages Vp and Vn are not equal to zero. Instead they 

have finite parasitic input resistances Rp and Rn, 

respectively. The input/ output behavior of the ZC-CC-

CDBA circuit can be described by the following matrix: 
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The MOS internal structure of the proposed ZC-CC-

CDBA is depicted in Fig. 2. Transistors Mb1, Mb2, Mb3, 

Mb4, Mb5, and Mb6 represent multiple output current 

mirror providing the constant bias current IBias to the 

circuit branches. The current differencing unit (CDU) is 

the cascade of two BD current followers M1, M2, M3, M4 

and M5, M6, M7, M8. Each of them is constructed from 

the flipped voltage follower current sensor structure (BD-

FVFCS) [47] with enhanced BD current mirror [18]. This 

combination provides extremely low voltage operation 

capability and better linearity. The transistors M4 and M8 

represent simple voltage source. The current IB through 

these transistors is extremely small in comparison with 

the bias current IBias to avoid extra undesired offset. The 

transistors M9, M10 mirror the output current of the first 

current follower (In+IBias) to be subtracted from the output 

current of the second current follower (Ip+IBias). The 

resulting current (Ip-In) is lead away from z terminal. 

Transistors M11 and M12 provide a current copy of z 

terminal to zc terminal. The voltage follower (VF) 

consists of BD differential input stage M13, M14. 

Transistor M15 acts as a tail transistor of the differential 

input stage. Transistors Mb6 and M16 represent the second 

stage of the VF. Transistors Mb4 and Mb5 act as an active 

load. Transistors M13, M14, M15 construct BD flipped 

voltage follower differential structure (BD-DFVF) [47]. 

Owing to use the BD flipped voltage follower structure 

in the proposed circuit, the minimum power supply 

voltage VDD,min can be given by: 

DSsatGSDD VVV min,               (2) 

whereas VGS and VDSsat are the gate-source and the drain-

source voltage of The MOST, respectively. It is obvious 

from (2) that the proposed circuit is capable to operate 

under ULV conditions. 
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Figure 2.  The proposed MOS structure of the ZC-CC-CDBA. 

Moreover, the parasitic input resistances Rp, Rn can be 

described by: 

7,35,17,3
,

1

dsmbm
pn

rgg
R                      (3) 

 

Figure 3.  Parasitic resistances Rp and Rn versus the bias current IBias. 
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These resistances Rp and Rn can be adjusted via the 

bias current IBias as it is shown in Fig. 3. Hence designers 

started to utilize these resistances instead of the passive 

resistors in several applications. 

III.APPLICATION EXAMPLE 

A current mode universal filter based on ZC-CC-

CDBA is introduced in this section to confirm the 

functionality of the proposed circuit [32]. The multi-

function current mode filter is depicted in Fig. 4. This 

filter performs three functions simultaneously: low pass, 

high pass, and band pass with high output impedance 

property. The parasitic resistances (Rp1, Rn1) of the ZC-

CC-CDBA1, (Rp2, Rn2) of the ZC-CC-CDBA2, and (Rp3, 

Rn3) of the ZC-CC-CDBA3 can be tuned via bias currents: 

IB1, IB2, and IB3, respectively. The output currents IHP, IBP 

and ILP of this filter are flowing out the zc1, zc2 and zc3 

terminals, respectively. These currents are flowing into 

the working impedances directly. 
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Figure 4.   Current mode biquad filter based on ZC-CC-CDBA. 

The transfer functions of the filter are given by: 
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The pole frequency (ω0) and the quality factor (Q) of 

the filter are described by: 

3221
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It is obvious from (7) and (8), that the quality factor 

can be adjusted independently from the pole frequency 

by adjusting the value of Rp1 via IB1. 

IV. SIMULATION RESULTS 

A. ULV LP ZC-CC-CDBA Simulation Results: 

The performances of the proposed circuit are verified 

by PSPICE simulator using 0.18 µm CMOS technology 

from TSMC; its PSPICE model parameters can be found 

in [48]. The optimal transistors aspect ratios of the 

proposed circuit ZC-CC-CDBA shown in Fig. 2 are listed 

in Table. I. 

TABLE I. THE TRANSISTORS ASPECT RATIOS OF THE CIRCUIT 

SHOWN IN FIG. 2  

Transistor W/L [µm/µm] 

Mb1, Mb2, Mb3, Mb4, Mb5, Mb6 15/1.5 

M9, M10, M11 80/3 
M3  3/0.3 

M7 8/0.3 
M1, M2  40/2 

M5, M6, M12 40/3 
M4, M8 80/1 

M15 20/3 

M13, M14 30/3 
M16 15/3 

 

All the simulations are performed for IBias=3 µA, IB=4 

nA with an extremely low voltage supply of 0.65 V. The 

DC curves Iz,zc versus In and Ip are depicted in Fig. 5. 

Thanks to utilizing enhanced BD current mirror, the 

proposed circuit offers high linearity of Iz versus In and Ip 

with extremely low current offset whose value is less than 

0.05 µA. The DC curves Iz versus Ip for various values of 

In are shown in Fig. 6, whereas the current In vary from -3 

µA to 3 µA with a step of 1 µA.  

 

Figure 5.  DC curves Iz, Izc versus Ip and In. 

 
Figure 6.  DC curves Iz, Izc versus Ip for various values of In. 
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The frequency responses of the current gains Iz,zc/In and 

Iz,zc/Ip are shown in Fig. 7. The current gains are unity at 

low frequencies. The cutoff frequencies of these gains are 

2.4 MHz and 5.15 MHz of Iz,zc/In and Iz,zc/Ip, respectively.  

The frequency dependence of the parasitic impedance of 

the z terminal is shown in Fig. 8. The impedance of z 

terminal is very high about 2.67 MΩ at low frequencies. 

 
Figure 7.  Frequency responses of the current gains Iz,zc/Ip, Iz,zc/In. 

The DC curve Vz versus Vw is shown in Fig. 9. Besides, 

the voltage error (Vz-Vw) is depicted. The high linearity 

and the wide range operation can be observed. 

Furthermore, in the range from 0.04 V to 0.58 V, the 

voltage error is less than 1 mV. 

 

Figure 8.  Frequency response of the parasitic impedances of z and zc 

terminals. 

 

Figure 9.  DC curves Vw versus Vz and the voltage error Vz-Vw. 

The frequency response of the voltage gain Vw/Vz is 

clarified in Fig. 10. The AC simulation is performed 

using capacitive load of 1pF. The cutoff frequency is 

11.18 MHz with unity gain at low frequencies. 

The frequency response of the parasitic impedance of 

w terminal is depicted in Fig. 11. The value of this 

impedance at low frequencies is 1 kΩ. The most 

important features of the proposed ZC-CC-CDBA are 

listed in Table II. 

 

Figure 10.  AC curve of the voltage gain VW/VZ.  

The power consumption of the proposed circuit is 

extremely low (5.6 µW to 56 µW) for (IBias=1 µA to 

IBias=10 µA), respectively. 

 
Figure 11.  Frequency dependence of the parasitic impedance of w 

terminal. 

TABLE II. THE MOST IMPORTANT CHARACTERISTICS OF THE CIRCUIT 

IN FIG. 2  

Parameter Value 

Voltage  supply, bias current 0.65 V, 3 µA 

Power consumption  for IBias=3 µA 17 µW 

3 dB bandwidth of Iz,zc/Ip, Iz,zc/In 5.15 MHz, 2.4 MHz 

Current offset  <50 nA 

Current gains Iz,zc/Ip, Iz,zc/In 1, 1 

3 dB bandwidth of Vw/Vz 11.18 MHz 

voltage gain Vw/Vz 1 

Voltage offset <1 mV 

Resistance of terminal Z 2.67 MΩ 

Resistance of terminal w 1 kΩ 

 

B. Simulation Results of the Current Mode Biquad 

Filter Based on ZC-CC-CDBA: 

The simulation results of the multi-function current 

mode biquad filter shown in Fig. 4 are depicted in Fig. 12, 

13 and 14. The three ZC-CC-CDBAs are biased by 

IB1=IB2=IB3=1 µA. The components of the filter are C1=5 

nF and C2=10 nF. That yields the pole frequency of 950 

Hz, while the calculated pole frequency from (7) is 1 kHz. 

Thus the deviation is 5.2%. This error comes from the 

non-ideal parasitic properties of the ZC-CC-CDBA. The 

frequency responses of the current gains of the filter 
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shown in Fig. 4 are presented in Fig.12 for Rload=1 Ω. It is 

obvious that this filter can provide low pass, band pass 

and high pass functions simultaneously, without any 

change in the circuit topology. The band pass gain 

responses for various values of IB1 are depicted in Fig. 13. 

It can be observed that by adjusting the Rp1 value via IB1, 

the quality factor can be tuned independent from the pole 

frequency as it was clarified in (7) and (8). Moreover, Fig. 

14 depicts the band pass filter gain responses for 

(IB1=IB2=IB3=0.5 µA, 1 µA and 1.5 µA), it is noticeable 

that the pole frequency can be adjusted without affecting 

the quality factor as it was described in (7) and (8). 

 

Figure 12.   Frequency response of the proposed filter. 

 

Figure 13.  The response of the band pass filter for different IB1 values. 

 

Figure 14.  The response of the band pass filter for different values of IB1, 

IB2 and IB3. 

V. CONCLUSIONS 

This paper presents a new ULV LP bulk driven based 

ZC-CC-CDBA capable to operate under single supply 

voltage of only 0.65 V. Besides, the proposed circuit 

enjoys circuit simplicity, high linearity, extended output 

voltage range and tunable parameters. Furthermore, 

additional copy of the difference current (Ip-In) is 

available through zc terminal. This additional terminal 

solves the problem of utilizing output current to drive the 

working impedance directly. Eventually, as an example 

of application a multi-function current mode filter is 

presented to prove the functionality of the proposed 

circuit. Thanks to the tunable parameters of the circuit the 

quality factor and the pole frequency are adjustable 

independently. 
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