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Abstract—The reported method of Equivalent transfer 

function(ETF) method for PI/PID decoupled controller 

design of multi-input multi-output square systems (Xiong, et 

al., 2007) is extended to non-square systems. This method is 

applied by simulation to Example considered by Ogunnaike 

and Ray (1994) given by 2×3 system. Simulation studies 

have been carried out for servo problem and regulatory 

problems. Robust performance (10% increase in each 

process gain, 10% increase in each time delay, and 10% 

decrease in each time constant) of servo problem and 

regulatory problem are also checked. The improvement of 

performance of non-square controller compared with that 

square controller is evaluated. The performance is evaluated 

in terms of ISE. 

 

Index Terms—ETF, decoupled controller, servo, non square, 

ISE 

 

I. INTRODUCTION 

Most of the large and complex industrial processes are 

naturally multi-input multi-output (MIMO) systems. 

Processes with unequal number of input variables 

(manipulated variables) and output variables (controlled 

variables) often arise in many industries. These systems 

are known as non-square systems. Such a systems may 

have either more outputs than inputs or more inputs than 

outputs. Some examples, for non-square systems with 

more inputs than outputs, are mixing tank process 

(Reeves, et al. 1989) 2  3 system [2], shell control 

problem (Vlachos et al. 1999) 7 5 system [3], etc. A 

common approach towards the control of non-square 

processes is to first square up or to square down the 

system through the addition or removal of appropriate 

inputs or outputs in order to obtain a square system. But 

none of the alternates is desirable. Adding unnecessary 

outputs to be measured can be costly, while deleting 

inputs leaves fewer variables to be automatically 

manipulated in achieving the desired control. This may 

result in excessive variations in the manipulated variable. 

Similarly, reducing the number of measured outputs 

decreases the amount of feedback information available 

to the system, and arbitrarily adding new manipulated 

inputs can incur unnecessary cost. Hence superior 

performance can be achieved by the original non-square 

system. 

Two PI/PID based control schemes: multi-loop control 

and decoupling control. In multi-loop control, the multi-

input multi-output (MIMO) processes are treated as a 
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collection of multi-single loops, and a controller is 

designed and implemented on each loop by taking loop 

interactions into account. The multi-loop controller 

design method may fails to give acceptable responses if 

there exist severe loop interactions. For multi-input multi-

output (MIMO) processes with severe loop interactions, 

the decoupling control schemes are often preferred. The 

decoupling control usually requires two steps: (1) design 

of the de-coupler to minimize the interactions among 

loops; and (2) design of the main loop controllers for 

overall system performance [5]. 

II. EQUIVALENT TRANSFER FUNCTION (ETF) 

METHOD FOR PI/PID DECOUPLING CONTROLLER 

DESIGN 

Equivalent transfer function method for PI/PID 

decoupled controller design of multi-input multi-output 

systems[1] include three steps: (1) using the concepts of 

energy transmission ratio to obtain the effective relative 

gain, relative gain and relative frequency of a given 

transfer function matrix; (2) using the information 

obtained in the first step to obtain an equivalent transfer 

function matrix for closed loop system; and (3) designing 

the off-diagonal controllers based on interaction analysis 

and the diagonal controllers for original transfer functions 

of main loops. 

A. General Formulation of Multi-Input Multi-Output 

Control 

Consider an open loop stable multivariable system 

with n-inputs and n-outputs as shown in Fig. 1, where ir , 

i = 1, 2, ..., n are the reference inputs; iu , i = 1, 2, ..., n 

are the manipulated variables; iy , i = 1, 2, ..., n are the 

system outputs, 

 

Figure 1. Closed loop multivariable control system. 

G(s) and )(sGc
 are process transfer function matrix 

and full dimensional controller matrix expressed by Eq. 

(1) and Eq. (2) respectively. 
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Process transfer function is considered as a second 

order pulse time delay system 
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B. Dynamic Relative Gain Array 

When a MIMO control system is closed, there exist 

interactions among loops as a result of the existence of 

non-zero off-diagonal elements in the transfer function 

matrix. The interactions can be dynamically measured by 

the dynamic relative gain defined by 
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where )(sg
ij



 is the equivalent close loop transfer 

function of )(sg ij
when all other loops are closed. For 

overall system, the above equation can be written in a 

matrix form which results in the dynamic relative gain 

array (DRGA), 
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Substituting Eq. (4) into (5) results in 
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where the operator  is the hadamard product. Since 

)(sg ij



 is controller dependant, it is impossible to 

compute K(s) without first knowing the controller 

parameters. By assuming the process is under perfect 

control, however, a simple computational algorithm for 

K(s) can be obtained to calculate the relative gains at  

each frequency point; 
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C. Energy Transmission Ratio 

Express the energy transmission ratio of )(sg ij
 as 
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We approximate the integration of ije  by a rectangle 

area, i.e., 

ijcijij ge ,)0(  , i, j=1, 2, …, n         (11) 

where cij  is the critical frequency of the transfer 

function )(sg ij
 which can be defined in two ways: 

1) bijcij   , where bij  for i,j = 1, 2, ..., n is the 

bandwidth of the transfer function )(
0

j
ij

g  and 

determined by the frequency where the magnitude plot of 

frequency response reduced to 0.707 time, i.e., 

)0(707.0)( , ijijbij gjg 
             (12)

 

2) cij  = uij , where uij  for i, j = 1, 2, ..., n is the 

ultimate frequency of the transfer function 
)(

0

j
ij

g  and 
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determined by the frequency where the phase plot of 

frequency response across – , i.e., 

  )(arg ,ijuij jg 
               (13)

 

For transfer function matrices with some elements 

without phase crossover frequencies, such as first order or 

second order without time delay, it is necessary to use 

corresponding bandwidths as critical frequencies to 

calculate ije . However, it is worth to point out that the 

phase cross over frequency information, i.e., ultimate 

frequency (
uij ) is recommended if applicable for 

calculation of ije , since it is closely linked to system 

dynamic performance and control system design. we will 

use 
uij  as the bases for the following development. 

For the frequency response of )( jg ij
, ije  is the area 

covered by )( jg ij
 up to 

uij . Since |
)(

0
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g | 

represents the magnitude of the transfer function at 

various frequencies, ije  is considered to be the energy 

transmission ratio from the manipulated variable ju  to 

the controlled variable iy . 

For the overall system, the energy transmission ratio 

can be expressed by effective energy transmission ratio 

array and given by 
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where Eq. (15) and Eq. (16)are the steady state gain array 

and the critical frequency array, respectively. 
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D. Effective Relative Gain Array 

The effective relative gain, ij , between output 

variable iy  and input variable ju  is define as the ratio 

of two effective energy transmission ratio: 
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where ije
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 is the effective energy transmission ratio 

between output variable iy  and input variable ju  when 

all other loops are closed. When the effective relative 

gains are calculated for all the input/output combinations 

of a multivariable process, it results in an array, ERGA, 

which can be calculated by 
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The ERGA based loop pairing rules requires that 

manipulated and controlled variables in the main loop be 

paired by those pairs whose ERGA values are positive 

and closest to 1.0. 

E. Relative Frequency Array 

According to Effective relative gain array, Place the 

qualified pairs to the diagonal position and rewrite Eq. 

(17) as  
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We obtain 
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Which can also be expressed in matrix form, i.e., 

relative frequency array (RFA), and calculated by 
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where  is the hadamard division, ij  and ij  are the 

steady state relative gain and relative critical frequency of 

loop i - j, respectively. 
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F. Equivalent Transfer Function of Closed Loop System 

and Parameterization of Controllers 

Using ij  and ij , we can now determine the 

equivalent transfer function )(sg
ij



. Rewrite )( jg ij
 as 
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where )0(ijg , ijl  and )(0 sg ij
 are steady state gain, time 

delay and normalized transfer function of )(sg ij
 

excluding time delay, i.e., )0(0

ijg = 1, respectively. As 

control loop transfer functions when other loops closed 

will have similar frequency properties with when other 

loops open if it is well paired , we can let the effective 

transfer functions have the same structures as the 

corresponding open loop transfer functions but with two 

different parameters, i.e., 
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In Eq. (24), )0(
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ijg  reflects the gain change and can be 

determined by Eq. (20), while 


ijl reflects the change in 

critical frequency. Although the critical frequency is 

generally be affected by both time constant and time 

delay, they are exchangeable by linear approximation, it 

is reasonable to change only time delay to reflect the 

phase changes in the low frequency range which is given 

by 
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The design of full dimensional PI/PID controller 

consists of two parts: 

1) Off-diagonal controllers: The main task of the off 

diagonal controllers is to minimize the interactions 

among loops. 

2) Diagonal controllers: The diagonal controllers are 

to provide the desired performance of the closed 

loop control system. 

We use the gain and phase margins approach to design 

the controller. 

Theoretically, any SISO controller design approach 

can be employed. This is because the interaction is 

already approximately considered into the equivalent 

transfer functions. The gain and phase margins approach 

is selected because it provides good performance in terms 

of robustness with respect to the uncertainties in both 

process model and disturbance, and might be more 

acceptable by process control engineers. 

The standard PID controller is adopted as 
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Denoting the gain and phase margin specifications as 
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ijm, , and their crossover frequencies as 
ijg ,  

and 
ijp, , respectively, we have 
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By substitution and simplification to above equations, 

we obtain 
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Considering Eq. (20) and Eq. (26), the PID parameters 

are given by 
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Once loop interactions are dealt with by the off-

diagonal decoupling controllers, the diagonal loops can 

be considered as n independent loops. Each controller can 

thus be independently designed by single loop approaches 

based on the corresponding diagonal transfer functions, 

International Journal of Electronics and Electrical Engineering Vol. 2, No. 4, December, 2014

©2014 Engineering and Technology Publishing 312



sl

iiii

ii

ii
iie

sasa

g
sg






1

)0(
)(

,1

2

,2                (41)

 

Again, following the gain and phase margins approach, 

the controller parameters of main loops are given as 
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III. EXTENSION OF ETF METHOD TO NON-SQUARE 

SYSTEMS 

In the present work the Equivalent transfer function 

method by Xiong, et al., (2007) [1] for PI/PID decoupled 

controller design of multi-input multi-output square 

systems is extended to non-square systems. This method 

has been applied to an example considered by Ogunnaike 

and Ray (1994) [4] given by 2×3 system Simulation 

studies have been carried out for this example for servo 

problem, and regulatory problems. Robust performance 

(10% increase in each process gain, 10% increase in each 

time delay, and 10% decrease in each time constant) of 

servo problem, and regulatory problem is also checked. 

The improvement of performance of non-square 

controller compared with that square controller is 

evaluated. The performance is evaluated in terms of ISE. 

Example: considered by Ogunnaike and Ray, 1994. 

The vector form of transfer function model is 

Y(s) = G(s) * U(s)                        (43) 
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The steady state gain matrix is 
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As inverse does not exist for non-square systems. 

Moore -Penrose pseudo-inverse is used for non-square 

systems. The pseudo-inverse of G(0) is 
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5310.907736.0

3312.2479603.1

8688.416637.1

)]0([ pinvG
        (48)

 

Transpose of pseudo-inverse of G(0) is 

1.6637 1.9603 0.7736
( (0)) '

41.8688 247.3312 90.5310
pinvG

 
  

  

   (49) 

Dynamic relative gain array (DRGA) is  given by 

(0) ( (0)) 'DRGA G pinvG    (50) 











0905.07420.01675.0

0309.01372.08318.0               (51) 

Critical frequency array (Ω) is 











27.44.83.4

5245.58               (52) 

Effective energy transmission ratio array (E) is 

 )0(GE                          (53) 













00427.00252.00172.0

08.23815.04
E

        

(54) 

 

Effective relative gain array (ERGA) is 

TEEERGA                       (55) 











0485.07979.01536.0

2694.00368.06938.0
                  (56) 

Effective relative gain array is positive and nearly 

equal to unity for best pairing. So 1y  is paired with 1u
 

and 3u  and 2y  is paired with 2u . 

Relative frequency array (RFA) is 

DRGA

ERGA
RFA                            (57) 











5359.00753.19170.0

7184.82682.08340.0
RFA

          (58) 

The gain margin for all loops are specified as 

dbA ijm 50, 
 Full dimensional controller matrix is 

obtained by using gain and phase margin approach. 

Controllers are designed by gain and phase margin 

approach using the following controller parameters. 

Parameters of main loop controllers are 





















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










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iiiiiim

iid
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iip
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a

glA
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k
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,

,

,
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1
)0(2



            (59)

 

        

40.111 pk

      

3/40.111 ik

  

   

939.3722 pk

         

939.3722 ik
 

Parameters of decoupling controllers are 
































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(60)
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2.412 pk

      

5.1/2.412 ik

        

 

089.221 pk

      

5.2/089.221 ik

 
1824.031 pk

     

8.2/1824.031 ik

    

   

88.1332 pk

    

6.1/88.1332 ik  

Full dimensional controller matrix is 































)
6.1

1
1(88.13)

8.2

1
1(1824.0

)
1

1(939.37)
5.2

1
1(089.2

)
5.1

1
1(2.4)

3

1
1(40.1

)(

ss

ss

ss

sGc

             (61) 

IV. SIMULATION RESULTS 

A. Servo Responses 

Fig. 2 shows the response of y1 and interaction in y2 

for unit step change in set point r1. Fig. 3 shows the 

response of y2 and interaction in y1 for unit step change 

in set point r2.  Interaction in y2 due to step change in r1 

is less compared to interaction in y1 due to step change in 

r2. 

 

Figure 2. Response of y1 and interaction in y2 due to step change in r1 

 

Figure 3. Interaction in y1 and response of y2 due to step change in r2 

B. Regulatory responses 

Fig. 4, Fig. 5 & Fig. 6 shows the responses of the 

designed controllers due to change in load variables d1, 

d2, d3 respectively. It is assumed that the load transfer 

function matrix is same as that of process transfer 

function matrix. 

 

Figure 4. Response of y1 and interaction in y2 due to step change in 
d1 

 

 

Figure 5. Response of y1 and interaction in y2 due to step change in 
d2 
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Figure 6. Response of y1 and interaction in y2 due to step change in 
d3 

C. Robustness Studies 

Model parameters like process gain, time delay and 

time constant are consider to design any control system. 

Once controller designed the system performance will be 

satisfactory in simulation but not in real time due to 

model mismatch. But if we design a robust controller by 

considering same model parameters with deviation the 

system performance will be satisfactory in both 

simulation and real time. 

Robustness studies can be carried out for the perturbed 

system by 

a. Considering the 10% deviation in the time delay. 

b. Considering the 10% deviation in time constant. 

c. Considering the 10% deviation in the gain. 

Controllers designed by decoupling technique are 

giving the similar results for the predicted model and the 

actual plant model. 

1) Servo responses 

Fig. 7 shows the comparison of response of y1 and 

interaction in y2 for unit step change in set point r1 when 

10% increase in gain, 10% increase in time delay and 

10% decrease in time constant with original response. Fig. 

8 shows the comparison of response of y2 and interaction 

in y1 for unit step change in set point r2 when 10% 

increase in gain, 10% increase in time delay and 10% 

decrease in time constant with original response. Almost 

all responses are similar. So decoupling controllers 

achieve robust performance. 

2) Regulatory responses 

Fig. 9, Fig. 10 & Fig. 11 shows the comparison of 

response of y1 and interaction in y2 for unit step change 

in d1, d2 and d3 respectively when 10% increase in gain, 

10% increase in time delay and 10% decrease in time 

constant with original response.. Almost all responses are 

similar. So Decoupling controller achieve robust 

performance. 

 

 

Figure 7. Comparison of response of y1 and interaction in y2 due to 
step change in r1 when 10% increase in gain, 10% increase in 

time delay and 10% decrease in time constant with original 
response 

 

 

Figure 8. Comparison of interaction in y1 and response of y2 due to 
step change in r2 when 10% increase in gain, 10% increase in 

time delay and 10% decrease in time constant with original 

response 

 

 

Figure 9. Comparison of response of y1 and interaction in y2 due to 
step change in d1 when 10% increase in gain, 10% increase in 

time delay and 10% decrease in time constant with original 

response 
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Figure 10. Comparison of response of y1 and interaction in y2 due to 
step change in d2 when 10% increase in gain, 10% increase in 

time delay and 10% decrease in time constant with original 

response 

 

 

Figure 11. Comparison of response of y1 and interaction in y2 due to 
step change in d3 when 10% increase in gain, 10% increase in 

time delay and 10% decrease in time constant with original 

response 

D. Manipulated Variables Time Behaviour 

Fig. 12 and Fig. 13 shows the manipulated variables 

time behaviour due to step change in r1 and r2 

respectively. 

Fig. 14 and Fig. 15 shows the comparison of 

manipulated variables time behaviour due to step change 

in r1 and r2 respectively when 10% increase in gain, 10% 

increase in time delay and 10% decrease in time constant 

with original behaviour.. Almost all time behaviours are 

similar. So decoupling controller achieve robust 

performance. 

 

 

Figure 12. Manipulated variables time behaviour due to step change in 
r1 

 

 

 

Figure 13. Manipulated variables time behaviour due to step change in 
r2 

International Journal of Electronics and Electrical Engineering Vol. 2, No. 4, December, 2014

©2014 Engineering and Technology Publishing 316



 

 

 

Figure 14. Comparison of manipulated variables time behaviour due to 
step change in r1 when 10% increase in gain, 10% increase in 

time delay and 10% decrease in time constant with original 

response 

 

Figure 15. Comparison of manipulated variables time behaviour due to 
step change in r2 when 10% increase in gain, 10% increase in 

time delay and 10% decrease in time constant with original 
response 

V. COMPARISION WITH SQUARE SYSTEMS 

To bring down the system to a square form, the input 

(u3) is neglected. The resulting system is given by 




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13
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The steady state gain matrix is 













003.0004.0

07.05.0
)0(G

                      (62) 

Dynamic relative gain array (DRGA) is given by 

( ) (0) ( (0)) 'DRGA G invG                  (63) 











8427.01573.0

1573.08427.0
DRGA

                   (64) 

Critical frequency array (Ω) is 











4.83.4

45.58                    (65) 

Effective energy transmission ratio array is 

 )0(GE                        (66) 













0252.00172.0

3815.04
E

                   (67) 

Effective relative gain array (ERGA) is 

TEEERGA  *.)(                  (68) 











9389.00611.0

0611.09389.0
ERGA

                  (69)

 

Effective relative gain array is positive and nearly 

equal to unity for best pairing. So 1y  is paired with 1u
 

and 2y  is paired with 2u . 

Relative frequency array (RFA) is 

 RFA  










1141.13884.0

3884.01141.1

             (70) 

The gain margin for all loops are specified 

as
dbA ijm 50, 

. Full dimensional controller matrix is 

obtained by using gain and phase margin approach. 

Controllers are designed by gain and phase margin 

approach using the following controller parameters. 

Parameters of main loop controllers are 
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7.011 pk

       

3/7.011 ik

   

  

9695.1822 pk

         

9695.1822 ik
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Parameters of decoupling controllers are 
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641.412 pk

      

5.1/641.412 ik

     

    

8266.021 pk

      

5.2/8266.021 ik

 Full dimensional controller matrix is
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         (73) 

A. Comparison of Servo Responses of Non-Square 

System with Square System 

Fig. 16 compares the response of y1 and interaction in 

y2 for unit step change in set point r1. Fig. 17 compares 

the response of y2 and interaction in y1 for unit step 

change in set point r2. It is clear that Settling time is less 

for non-square system compared to square system. 

 

Figure 16.  Comparison of response of y1 and interaction in y2 of non-
square system with square system due to step change in r1 

 

 

Figure 17.  Comparison of interaction in y1 and response of y2 of non-
square system with square system due to step change in r2 

B. Comparison of Manipulated Variables Time 

Behaviour of Non-Square System with Square System 

Fig. 18 compares the manipulated variables time 

behaviour of non-square system with square system due 

to step change in r1. Fig. 19 compares the manipulated 

variables time behaviour of non-square system with 

square system due to step change in r2. It is clear that 

Non-square system gives better manipulated variables 

time behaviour compared with square system. 

C. Comparison of Servo Responses of Robustness 

Problem of 

 

Non-Square System with Square System 

Fig. 20 compares the response of y1 and interaction in 

y2 for unit step change in set point r1 of perturbed non-

square system with perturbed square system. Fig. 21 

compares the response of y2 and interaction in y1 for unit 

step change in set point r2 of perturbed non-square 

system with perturbed square system. Non-square system 

gives better responses than square down the system. 

 

 

Figure 18.  Comparison of manipulated variables time behaviour of 
non-square system with square system due to step change in r1

 

 

 

Figure 19.  Comparison of manipulated variables time behaviour of 
non-square system with square system due to step change in r2 
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Figure 20.  Comparison of response of y1 and interaction in y2 of 
robustness problem (10% increase in each process gain, 10% increase in 
each time delay and 10% decrease in each time constant) of non-square 

system with square system due to step change in r1 

 

 

Figure 21.  Comparison of interaction in y1 and response of y2 of 
robustness problem (10% increase in each process gain, 10% increase in 

each time delay and 10% decrease in each time constant) of non-square 
system with square system due to step change in r2 

D. Comparison Manipulated Variables Time Behavior 

of Robustness Problem of 

 

Non-Square System with 

Square System 

The manipulated variables time behaviour of non-

square system with square system due to step change in 

r1 and r2 of perturbed system (10% increase in each 

process gain, 10% increase in each time delay and 10% 

decrease in each time constant ) is compared. Non-square 

system gives better manipulated variables time behaviour 

compared with square system. 

 

Figure 22. Comparison of manipulated variables time behaviour of 

robustness problem ( 10% increase in each process gain, 10% increase 
in each time delay and 10% decrease in each time constant ) of non-

square system with square system due to step change in r1. 

 

 

Figure 23.  Comparison of manipulated variables time behaviour of 
robustness problem (10% increase in each process gain, 10% increase in 

each time delay and 10% decrease in each time constant) of non-square 
system with square system due to step change in r2 

VI. COMPARISON OF ISE VALUES OF NON-SQUARE 

CONTROLLER WITH SQUARE CONTROLLER 

Table I compares the ISE values of non-square 

controller with square controller. ISE values of perfect 

non-square model and perturbed non-square model are 

low compared with ISE values of perfect square model 

and perturbed square model. ISE values of non-square 

system is nearly 45% of the ISE values of the square 

system. So control of non-square system is better rather 

than squaring down the system. 
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TABLE I.  COMPARISON OF ISE VALUES OF NON-SQUARE 

CONTROLLER WITH SQUARE CONTROLLER. 

System 
Step 

change in 
ISE values for 

output y1 
ISE values for 

output y2 
Sum of ISE 

values 

Perfect model 
Non-square 

systems 

r1 2.34 0 2.34 

r2 3.29 4.555 7.845 

Perfect model 

square 
systems 

r1 4.97 0.49 5.46 

r2 1.23 7.936 9.166 

Perturbed 

model 
Non-square 

systems 

r1 2.46 0 2.46 

r2 3.32 4.69 8.01 

Perturbed 

model 
square 

systems 

r1 5.03 0.61 5.64 

r2 1.29 8.173 9.463 

 

VII. CONCLUSION 

Equivalent transfer function method for PI/PID 

decoupled controller design of multi-input multi-output 

square systems is extended to non-square systems. This 

method has been applied to an example considered by 

Ogunnaike and Ray (1994) given by 2×3 system. 

Simulation studies have been carried out for servo 

problem, and regulatory problems. Robust performance 

(10% increase in each process gain, 10% increase in each 

time delay, and 10% decrease in each time constant) of 

servo problem, and regulatory problem is also checked 

for the example. The improvement of performance of 

non-square controller compared with that square 

controller is evaluated. Simulation results show that non-

square controllers gives better response compared with 

square controllers. ISE values of non-square system are 

nearly 45% of ISE values of square system (Example 

considered by Ogunnaike and Ray). So significant 

improvements in the performance and robustness are 

obtained when the non-square system is controlled in its 

original form rather than squaring it down. 
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