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Abstract—State estimation theory is one of the best 

mathematical approaches to analyze the changes in the 

states of a system or a process. The state of the system is 

defined by a set of variables that provide a complete 

representation of the internal conditions of the system at 

any given time instant. There are two types of state models - 

linear state model and non-linear state model, which require 

different estimation techniques. Linear estimation of a 

system can be easily carried out by using Kalman Filter 

(KF), when the state space model is linear. But, most of the 

real life state models are nonlinear, thereby limiting the 

practical applications of the KF. The Extended Kalman 

Filter, Unscented Kalman filter and Particle filter are most 

commonly used for nonlinear estimation. EKF is the 

nonlinear version of the Kalman filters which revolves about 

the mean and covariance at the current time instant. The 

estimation can be linearized around the current estimate 

using the partial derivatives to compute estimates even in 

the nonlinear relations. This paper deals with estimation of 

various parameters of a nonlinear model with Extended 

Kalman filter (EKF).The paper analyses EKF method of 

estimating and then determining the attitude of the satellite 

depending upon the readings from the magnetometer. 

 

Index Terms—extended Kalman filter, estimation, attitude 

control, state space model, nano-satellite, magnetometers 

 

I. INTRODUCTION 

Filtering and estimation are two very important tools 

of engineering. [1] Whenever the state needs to be 

estimated from noisy sensor information, the estimator 

produces the best estimate of the true system state. When 

the system dynamics and observation models are linear, 

the minimum mean squared error or the least mean square 

error estimate can be computed using the Kalman filter. 

We control the process modeling by obtaining from a 

priori-knowledge, certain observable parameters. 

The success of the linear model in identification or in 

control has its cause in the good understanding of it. 

Since, most of the models are non-linear in reality; we 

generally deal with the non linear state space estimation. 

A common approach to overcome this problem is to 

linearize the system before using the Kalman filter, i.e. by 

using an Extended Kalman filter. This linearization does 

however have some problems, e.g. the error between the 

true value and the estimated values can vary beyond 
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acceptance, after a long period of time. The development 

of better estimator algorithms for nonlinear Systems has 

therefore attracted a great deal of interest in the scientific 

community, because the improvements will undoubtedly 

have great impact in a wide range of engineering fields. 

This paper deals with how to estimate a nonlinear model 

with Extended Kalman filter (EKF). The approach in this 

paper is to analyze Extended Kalman filter where EKF 

provides better probability of state estimation for a 

satellite determination in the space, based upon the value 

of readings of Magnetometer and Sun Sensor. 

II. LINEAR AND NONLINEAR MODELS 

A. State Space Models 

[2] A state space model is a mathematical model of a 

process, where state x of a process is represented by a 

numerical vector. State-space model actually consists of 

two sub models: The process model, which describes how 

the state propagates in time based on external influences, 

such as input and noise; and the measurement model, 

which describe how measurements z are taken from the 

process, typically simulating noisy and/or inaccurate 

measurements. 

B. Linear State Space Model 

A linear state-space model assumes the functions F and 

H are linear, in both state and input. The functions can 

then be expressed by using the matrices, B and H, 

reducing state propagation calculations to linear algebra. 

Overall this results in the following state-space model: 

 ( )   ( ) (   )   ( ) (   )   (   )  (1) 

 ( )   ( ) ( )     ( )                    (2) 

where u is process input, w is state vector, v is 

measurement noise vector, k is the discrete time. 

The above expressions (1) and (2) govern state 

propagation and measurements respectively. Linear 

model is easier both to calculate and analyze. Linear state 

models are either based on inherently linear processes, or 

simply linearized versions of a nonlinear process by 

means of a First order Taylor approximation. 

C. Nonlinear State Space Model 

The most general form of state-space models is the 

Non-linear model. This model does typically consist of 

two functions f and h. 

International Journal of Electronics and Electrical Engineering Vol. 3, No. 1, February, 2015

©2015 Engineering and Technology Publishing 38
doi: 10.12720/ijeee.3.1.38-43



    (              )               (3) 

     (     )                           (4) 

III. EXTENDED KALMAN FILTER 

A. Background-State Estimation 

[3] State estimation concerns the problem of estimating 

the probability density function (pdf) for the state of a 

process which is not directly observable. This involves 

both predicting the next state (based on the current state) 

and applying updates (based on measurement model). 

Estimator: Estimator is a tool that predicts the future 

behavior of a model from the available system 

information. The Estimator uses knowledge about the 

evaluation of the variable, the probabilistic 

characterization of the various random variables and the 

prior information. The generalized block diagram of 

space estimation is as shown in Fig. 1. 

 

Figure 1.  Mathematical view of state estimation 

Different estimators 

 Recursive Bayesian Estimation 

 Kalman Filter (KF) 

 Extended KF (EKF) 

 Unscented KF (UKF) and 

 Particle filter (PF) 

B. Recursive Bayesian Estimation (RBE) 

[4] The most general form of state estimation is known 

as Recursive Bayesian Estimation. This is the optimal 

way of predicting a state pdf for any process, given a 

system and a measurement model. RBE works by 

simulating the process, while at the same time adjusting it 

to account for new measurements z, taken from the real 

process. The calculations are performed recursively in a 

two-step procedure. First, the next state is predicted by 

extrapolating the current state onto next time step, using 

state propagation belief p(xk |xk-1) obtained from function 

f. Secondly, this prediction is corrected using 

measurement likelihood p(zk |xk) obtained from function 

h, taking new measurements into account. Unfortunately, 

this method does not scale very well in practice, mainly 

vectors. Calculating the prior probability of each point in 

this state space involves a multidimensional integral, 

which quickly becomes intractable as the state space 

grows. Computers are also limited to calculation of the 

pdf in discrete point in state space, requiring a 

discretization of the state space. This technique is 

therefore mainly considered as a theoretic foundation for 

state estimation in general. Bayesian estimation by means 

of computers is only possible if either the state space can 

be discretized, or if certain limitations apply for the 

model. 

C. Kalman Filter 

[5] The problem of state estimation can be made 

tractable if we put certain constrains on the process model, 

by requiring both ‘f’ and ‘h’ to be linear functions, and 

the Gaussian and white noise terms ‘w’ and ‘v’ to be 

uncorrelated, with zero mean. Put in mathematical 

notation, we then have the following constraints (5) and 

(6). As the model is linear and input is Gaussian, we 

know that the state and output will also be Gaussian. The 

state and output pdf will therefore always be normally 

distributed, where mean and covariance are sufficient 

statistics. This implies that it is not necessary to calculate 

a full state pdf anymore, a mean vector x cap and 

covariance matrix P for the state will suffice. The basic 

Kalman filter loop is as shown in the Fig. 2. 

 

Figure 2.  Kalman filter loop 

The recursive Bayesian estimation technique is then 

reduced to the Kalman filter, where f and h is replaced by 

the matrices F, B and H. The Kalman filter is, just as the 

Bayesian estimator, decomposed into two steps: predict 

and update. 

The Kalman filter is quite easy to calculate, due to the 

fact that it is mostly linear, except for a matrix inversion. 

It can also be proved that the Kalman filter is an optimal 

estimator of process state, given a quadratic error metric. 

Most processes in real life are not linear, and therefore 

need to be linearized before they can be estimated by 

means of a Kalman filter. So the practical applications of 

the KF are limited and so modified KF, aka EKF is 

generally used. Different from KF, EKF deals with 

nonlinear process model and nonlinear observation model. 

In the extended Kalman filter, the state transition and 

observation models need not be linear functions of the 

state, but may be differentiable functions. The nonlinear 

process model (from time k-1 to time k) is described as  

    (         )                      (5) 

     (  )                               (6) 

where xk-1, xk are the system state (vector) at time k-1; k, 

f is the system transition function, uk is the control, wk is 

the zero - mean Gaussian process noise wk ~ N(0; Q); h is 

the observation function and vk+1 is the zero - mean 

Gaussian observation noise vk+1 ~ N(0; R). 
The function f can be used to compute the predicted 

state from the previous estimate and similarly the 
function h can be used to compute the predicted 
measurement from the predicted state. However, f and h 
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cannot be applied to the covariance directly. Instead a 
matrix of partial derivatives (the Jacobian) is computed. 
At each time step the Jacobian is evaluated with current 
predicted states. These matrices can be used in the 
Kalman filter equations. This process essentially 
linearizes the non-linear function around the current 
estimate. 

D. Predict and Update Equations 

Predicted state estimate 

           (                 )  (7) 

Predicted covariance matrix 

  |                 |       
        (8) 

Update Equations 

Innovation or measurement residual 

  ~
k =  k    (    k|k-1)                     (9) 

Innovation (or residual) covariance 

                           (10) 

Near-optimal Kalman gain 

                            (11) 

Updated state estimate 

                              (12) 

Updated covariance estimate 

     (      )                   (13) 

where the state transition and observation matrices are 

defined to be the following Jacobians 

     = 
  

  
             ,          (14) 

     
  

  
                            (15) 

E. Continuous-Time Extended Kalman Filter 

Model 

 ( )   ( ( )  ( ))   ( ),  ( )  (   ( ))  (16) 

  ( )   ( ( ))   ( ),  ( )    (   ( ))      (17) 

Initialize 

    (  )     (  )  (  )       (  )]   (18) 

Predict Update 

    (  )   (    (  )  ( )   ( ) ( )  

 (    (  ))                            (19) 

( )    ( ) ( )    ( ) ( )T  ( ) ( ) ( )+ Q(t) (20) 

 ( )  
  

  
      ( )  ( )                     (21) 

       ( )    ( ) ( )T ( )-1
                 (22) 

       ( )  
  

  
       ( )                      (23) 

Unlike discrete-time extended Kalman filter, the 

prediction and update steps are coupled in continuous-

time extended Kalman filter. 

F. Continuous-Discrete Extended Kalman 

[6] Most physical systems are represented as 

continuous-time models while discrete-time 

measurements are frequently taken for state estimation 

via a digital processor. Therefore, the system model and 

measurement model are given by 

 ( )   ( ( )  ( ))   ( ) 

       ( )    (   ( ))                        (24) 

       ( )     (  )     k                       (25) 

      (    ) 

where,           

Initialize 

    (  )       (  )]  (  )          (  ) ]  (26) 

Predict 

      ( )     (     ( )  ( )) 

  ( )     ( ) ( )    ( )  ( )      ( ) 

                (  ) 

          (  )                        (27) 

with 

 ( )    
  

  
      ( )  ( )                  (28) 

The update equations are identical to those of discrete-

time extended Kalman filter. 

             (                 (29) 

                    (   (         )) 
(30) 

  |  (        )  |                 (31)  

where    =       |       -  

G. Modeling Example of Attitude Estimation and 

Control of a Nano-Satellite 

Functional Flow 

[7] The Nano-satellite extended Kalman filter uses the 

MBMV from the satellite emulator and the MIRV from 

the orbit propagator to estimate the spacecraft’s attitude 

at each time step in the time vector. The EKF also uses 

the estimated quaternions to generate a magnetic body 

estimate vector (MBEV) as a check to make sure the 

updated quaternion estimates transform the MIRV into a 

vector that is similar to the MBRV. As another check, the 

EKF takes the SIRV from the orbit propagator and 

transforms it into the solar body estimated vector (SBEV) 

using the quaternion estimates. The SBEV is then used to 

find the solar panel estimated power (SPEP). The SPEP is 

then compared to the SPRP, and the solar panel 

characterization used to find the SPEP is different than 

how the solar panels actually generate their power, it is 

assumed that large differences between the SPEP and 

SPRP will be able to be seen and attributed to filter 
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divergence. In the verification mode the filter outputs 

plots of the error between actual and estimated quaternion 

and rates, as well as the error between the MBRV and the 

MBEV, and the SPRP and the SPEP, all of which will be 

shown in detail later on in this chapter. 

Equation and Matrix Derivations 

State Vector 

The full state vector to be used for the EKF will be: 

     [
    
    

]                          (32) 

where 

     [
    
  

]                          (33) 

The system model equations 

           (    )     
and 

             

            

                                     (34) 

These equations are used to propagate the state vector 

from one time step to the next in the EKF. The 

propagation is done using a numerical differential 

equation solver in Matlab, this is acceptable for a ground-

based routine; however, this propagation method will 

have to be changed for this routine to be implemented on-

board a satellite. 

Body-Fixed (Reduced) State Vector 

A body-fixed state vector is also used in the EKF in 

order to remove the built-in quaternion redundancy that 

comes from representing a frame transformation with 

four variables. The removal of this redundancy eliminates 

the need to deal with quaternion normalization and 

associated issues with the covariance matrix P in the EKF. 

The body-fixed, or reduced, state vector is defined as: 

x
~
=[
     
    

]                              (35) 

The δ qv vector is the vector component of the error 

quaternion that transforms the estimated full quaternion 

to the actual quaternion, shown below. 

                                    (36) 

Assuming the filter is converging, the error quaternion 

will start to represent a smaller and smaller rotation; and 

as such, the magnitude of the vector component will be 

less than one and will be approaching zero. Thus, the 

fourth component of the error quaternion can be 

computed as: 

  4 = √           2                    (37) 

However, during initial convergence the magnitude of 

the vector component could be greater than one, leading 

to an imaginary fourth quaternion component. During this 

situation the error quaternion is calculated by the method 

developed by Humphreys of Utah State University, 

shown below. 

      
 

√           
2 [ 
     
 

]             (38) 

A relationship between the reduced state vector and the 

full state vector can be derived. 

First the quaternion product is expressed as matrix 

multiplication 

qbar=        bar
^ 
=[∑( bar^)|      ]       (39) 

∑( bar^)=[           
                    
                        
              ] 

Knowing that quaternions are normalized, the 

following can be shown. 

                (   )                                        (40) 

Now the relationship can be shown mathematically as: 

[
     
    

] = [
    (      )      

        
] [
    
    

]     (41) 

Using properties of quaternion multiplication, the 

reduced state dynamic equation is found to be: 

      
=½ Ω ωbar       –½         ωbar^   (42) 

State Error Vector 

The state error vector    is defined as: 

                                    (43) 

Using the fact 

            T(    )                             (44) 

The state error vector becomes 

                 
     
     

]                       (45) 

State Transition Matrix 

The state transition matrix is approximated as: 

                                      (46) 

The linear system dynamics matrix Fk can be found be 

linearizing the dynamics equations about the current state 

vector estimate. The linearization results in the following 

matrix. 

Fk =[
     ]        
     (  )

] 

where 

 (  )    

         
         
         

           (47) 

Measurement Matrix 

The measurement matrix is derived from the following 

equation. 

          = A(     ) (     )        (48) 

This equation can be rewritten as: 
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= A(            

      
) 

where 

Bbark
body ^

= A(     
 
) MIRVk               (49) 

The transformation matrix A(q ) can be written as: 

 (    )  (          )       (    )(    )   
         ]                           (50) 

The rotation created from δq is small, and reduces the 

previous equation to: 

A (     )      - 2[       ]            (51) 

Now, using the cross product commutative relationship, 

h (~x) can be written as: 

h(x~) = I3×3 + 2[(b bar)
^
 ×]                (52) 

The discrete measurement matrix easily follows from 

the above equation. 

                  ]     ]         (53) 

The Noise Matrices 

The measurement noise matrix is defined as: 

Rk  = σ
2

magnetometerI3×3                    (54) 

The constant in front of the identity matrix is the 

square of the standard deviation of the Magnetometers. 

The process noise matrix is found from the equation in 

Section 6.2.2.2 using the previously defined state 

transition matrix. The non-discrete process noise matrix 

gets factored into an identity matrix and scalar as shown 

below. 

  ]                             (55) 

Physically the scalar Q is the square of the error of the 

first derivatives of the state vector. This parameter is set 

during the filter tuning process. 

Loop Initialization Equations 

The initial quaternion estimate – is just taken to be 

aligned with the ECI frame. The initial rate estimate −

is found be using the first two magnetic field 

measurements, which will be shown below. The change 

in the magnetic field measured by the satellite is given by 

the following equation. 

             
    

=          
    

+                  
    

  (56) 

For short sampling times the inertial change of the 

magnetic field is negligible and the measured change can 

be approximated by the difference between two 

consecutive measurements divided by the sampling time. 

(     
    

–         )  =          
    

    (57) 

A pseudo-inverse cross product is then used to yield 

the initial rate estimate, as shown below. 

     
   

     
    

   
     

       
       

    

  

 |     
    

|  
     (58) 

The initial covariance estimate Pbar0 is defined as the 

6x6 identity matrix multiplied by constant. 

                                (59) 

The scalar parameter P is set during the filter tuning 

process along with Q. 

Filter Tuning and Performance 

[8] In the actual implementation of the filter, the 

measurement noise covariance is usually measured prior 

to operation of the filter. Measuring the measurement 

error covariance is generally practical (possible) because 

we need to be able to measure the process anyway (while 

operating the filter) so we should generally be able to 

take some off-line sample measurements in order to 

determine the variance of the measurement noise. The 

determination of the process noise covariance is generally 

more difficult as we typically do not have the ability to 

directly observe the process we are estimating. 

Sometimes a relatively simple (poor) process model can 

produce acceptable results if one “injects” enough 

uncertainty into the process via the selection. Certainly in 

this case one would hope that the process measurements 

are reliable. In either case, whether or not we have a 

rational basis for choosing the parameters, often times 

superior filter performance (statistically speaking) can be 

obtained by tuning the filter parameters Q and R. The 

tuning is usually performed off-line, frequently with the 

help of another (distinct)Kalman filter in a process 

generally referred to as system identification. Fig. 3 

clearly illustrates the tuning of the Kalman filter. 

 

Figure 3.  Filter tuning 

In closing we note that under conditions where states 

are in fact constant, both the estimation error covariance 

and the Kalman gain will stabilize quickly and then 

remain constant. 

If this is the case, these parameters can be pre-

computed by either running the filter off-line, or for 

example by determining the steady-state value. 

[9] It is frequently the case however that the 

measurement error (in particular) does not remain 

constant. For example, when sighting beacons in our 

optoelectronic tracker ceiling panels, the noise in 

measurements of nearby beacons will be smaller than that 

in far-away beacons. Also, the process noise is sometimes 

changed dynamically during filter operation—becoming 
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—in order to adjust to different dynamics. For example, 

in the case of tracking the head of a user of a 3D virtual 

environment we might reduce the magnitude of if the user 

seems to be moving slowly, and increase the magnitude if 

the dynamics start changing rapidly. In such cases the 

choice would be to account for both uncertainties about 

the user’s intentions and uncertainty in the model. 
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