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Abstract—This work presents the application of classical 

methods for optimal power flow (OPF) solution. The main 

objectives of electrical energy systems are to meet load 

demand with adequacy and reliability and to keep at the 

same time ecological and economic prices as low as possible. 

The OPF problem is nowadays an essential tool in power 

systems planning, operational planning and real-time 

operation. The OPF problem is modeled as a constrained 

nonlinear optimization problem, non-convex of large-scale, 

with continuous and discrete variables. Traditionally, 

classical optimization methods are used to effectively solve 

OPF problem, where Newton method and Primal Linear 

Programming (PLP) method have been selected for OPF 

solution. Results for the 26 bus power system network and 

IEEE 30 bus test systems are presents to validate the 

efficiency of proposed model and solution technique. 
 

Index Terms—optimal power flow problem, newton method, 

primal linear programming method, real power scheduling 

 

I. INTRODUCTION 

In an interconnected power system, the objective 

function is to find real and reactive power scheduling of 

each power plant in such a way as to minimize the 

operating cost as well as maximize social welfare [1]. 

This means that the generator’s real and reactive power 

are allowed to very within certain limits so as to meet a 

particular load demand with minimum fuel cost. This is 

called the Optimal Power Flow (OPF) problem; it is used 

to optimize the power flow solution of large scale power 

system. This is done by minimizing selected objective 

functions while maintaining generator capability limits, 

bus voltage limits and power flow limits in transmission 

lines [2], [3]. 

The objective function is known as cost function, may 

present economic costs, system security, emission etc. the 

real power play predominant role in power system, the 

economic operation depends on real power generation 

only so that we limit our analysis to the economic 

dispatch of real power generation [4]. 

The term OPF refers to an operating state or load flow 

solution where some power system quantity is optimized 

subject to constraints on the problem variables and on 

some functions of these variables [5]. The OPF is a static, 

nonlinear, non-convex, large-scale optimization problem 

with continuous and discrete variables [6]. The 
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constraints are usually classified under two categories: 

Equality constraints and Inequality constraints. OPF is 

nowadays an essential tool in power systems planning, 

operational planning and real-time operation [7]. There 

are several methods to solve this optimization problem, 

where two classical methods have been used, one is 

Newton method and another is PLP method. 

In the area of Power systems, Newton’s method is well 

known for solution of Power Flow. It has been the 

standard solution algorithm for the power flow problem 

for a long time. The necessary conditions of optimality 

referred to as the Kuhn-Tucker conditions are obtained in 

this method [8], [9]. The Newton approach [10] is a 

flexible formulation that can be adopted to develop 

different OPF algorithms suited to the requirements of 

different applications. Although the Newton approach 

exists as a concept entirely apart from any specific 

method of implementation, it would not be possible to 

develop practical OPF programs without employing 

special sparsity techniques [11]-[13]. This method 

handles marginal losses well, but is relatively slow, has 

problems in determining binding constraints, and need 

more memory to save data. 

Linear programming formulation requires linearization 

of objective function as well as constraints with 

nonnegative variables. The Primal LP OPF solution 

algorithm iterates between solving the power flow to 

determine the flow of power in the system devices and 

solving an LP to economically dispatch the generation 

(and possibility other controls) subject to the transmission 

system limits [14]. In the absence of system elements 

loaded to their limits, the OPF generation dispatch will be 

identical to the economic dispatch solution, and the 

marginal cost of energy at each bus will be identical to 

the system λ. However, when one or more elements are 

loaded to their limits the economic dispatch becomes 

constrained, and the bus marginal energy prices are no 

longer identical [15], [16]. In some electricity markets 

these marginal prices are known as the Locational 

Marginal Prices (LMPs) and are used to determine the 

wholesale price of electricity at various locations in the 

system [17], [18]. This method gives fast solution and 

efficient in determining binding constraints, but has 

difficulty with marginal losses. 

This paper presents optimal power flow solution of 26 

and IEEE 30 bus test systems. The OPF problem is 

solved by Newton and PLP methods. Results are 

compared between two methods; it has been found, which 
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method give good OPF solution. This paper is organized 

as follows: Section II deals with OPF problem 

formulation. Section III presents Newton Method. Primal 

Linear Programming (PLP) method is presented in 

section IV. Section V presents simulations results of NR 

and PLP methods. Finally section VI concludes this paper. 

II. OPF PROBLEM FORMULATION 

The solution of Optimal Power Flow (OPF) problem 

aims to optimize a selected objective function via optimal 

adjustment of power system control variables while 

satisfying various equality and inequality constraint. 

Mathematically, the OPF problem can be formulated as 

follows: 
The objective function is expressed as: 

inf( , )M x u                                  (1) 

Subject to satisfaction of non linear equality 

constraints: 

( , ) 0g x u                                   (2) 

and non linear inequality constraints: 

( , )h x u                                      (3) 

where f(x, u) is the total cost function, x is dependent 

variable or state variable and u is controlled variable. 

The dependent variable x consisting of: 

 Load bus voltage magnitude 
L

V  and phase angles 

L
  

 Generator active and reactive power output 

&
Gi Gi

P Q , i=2, 3, 4,……, NG 

 Generator active and reactive power output at 

slack bus 
1 1

&
G G

P Q  

 Transmission line loading 
l

S  

Hence x can be expressed as: 

 
1 1 1 1 ln
, .... , .... , ...

T

G L LNL G GNG l l
x P V V Q Q S S           (4) 

where, NL, NG, and nl are the number of load buses, 

number of generators, and number of transmission lines 

respectively. 

u is the vector of independent variables (control 

variables) consisting of: 

 Generating bus voltage magnitude 
G

V  

 Generator active power output 
G

P  at PV buses 

except at the slack bus 
1G

P  

 Transformer taps settings T. 

 Shunt VAR compensation 
C

Q  

Hence u can be expressed as: 

 
2 1 1
... , , .... , ...

T

G GNG GNG C CNG NT
u P P V Q Q T T           (5) 

where NT and NC are the number of regulating 

transformers and VAR compensator, respectively. 

g(x, u) is the equality constraints, which represent 

typical load flow equations: 

    
1

cos sin

NB

Gi Di i j ij i j ij i j

j

P P V V G B   


         (6) 

    
1

sin cos

NB

Gi Di i j ij i j ij i j

j

Q Q V V G B   


           (7) 

where NB is the number of buses, PG and QG are the 

active and reactive power generations, PD and QG are the 

active and reactive power demand, and Gij and Bij are the 

conductance and susceptance between the i
th

 and j
th

 bus, 

respectively. 

h(x, u) is the inequality constraints that include: 

 Generator constrains: generator bus voltages, 

active power outputs, and reactive power outputs 

are restricted by their lower and upper limits. 

min max
, 1, 2,......,

Gi Gi Gi
V V V i NG                    (8) 

min max
, 1, 2,......,

Gi Gi Gi
P P P i NG                    (9) 

min max
, 1, 2,......,

Gi Gi Gi
Q Q Q i NG                  (10) 

 Transformer constraints: transformer tap settings 

are restricted by their lower and upper limits as: 

min max
, 1, 2,......,

Gi Gi Gi
T T T i NT                   (11) 

 Shunt VAR Constraints: shunt VAR 

compensations are restricted by their limits as: 

min max
, 1, 2,......,

Ci Ci Ci
Q Q Q i NC                  (12) 

 Security constraints: include the constraints of 

voltages at load buses and transmission line 

loading as: 

min max
, 1, 2,......,

Li Li Li
V V V i NL                  (13) 

max
, 1, 2,......,

li li
S S i nl                       (14) 

III. NEWTON METHOD 

The Newton method is a powerful method of solving 

nonlinear algebraic equations. For large power systems, 

use of Newton method is more efficient because it is 

mathematically superior to other classical methods. It has 

been the standard solution algorithm for the power flow 

problem for a long time. The Newton method is a flexible 

formulation that can be adopted to develop different OPF 

algorithms suited to the requirements of different 

applications. 

The solution for the OPF problem by Newton’s 

method requires the creation of the Lagrangian as shown 

below 

  ( ) ( ) ( )
T T

L z f x h x g x                   (15) 

where z=[x  µ  λ]
T
, µ and λ are vectors of the Lagrange 

multipliers, and g(x) only includes the active (or binding) 
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inequality constrains. The gradient and hessian of the 

Lagrangian is then defined as 

Gradient=  
 

i

L z
L z

z


 



 
 
 

                  (16) 

and 

Hessian=

2

2 ( )
( )

i j
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z z
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              (17) 

It can be observed that the structure of the Hessian 

matrix shown above is extremely sparse. This sparsity is 

exploited in the solution algorithm. According to 

optimization theory, the Kuhn-Tucker necessary 

conditions of optimality can be mentioned as given under, 

Let 
* * * *

, ,Z x      , is the optimal solution 

 * * * *
( ) , , 0

x x
L z L x                      (18) 

 * * * *
( ) , , 0L z L x

 
                     (19) 

 * * * *
( ) , , 0L z L x

 
                     (20) 

*
0

i
   if  *

0h x                             (21) 

(i.e inequality constraint is active) 

*
0

i
   if  *

0h x                             (22) 

(i.e inequality constraint is not active) 

*
0

i
   Real                                  (23) 

By solving the equation 
*

( ) 0
z
L z  , the solution for 

the optimal problem can be obtained. Once an 

understanding of the calculation of the Hessian and 

Gradient is attained, the solution of the OPF can be 

achieved by using the Newton’s method algorithm. 

IV. PRIMAL LINEAR PROGRAMMING METHOD 

Linear Programming (LP) method treats problems 

having constraints and objective functions formulated in 

linear form with non negative variables. This method is 

completely reliable, very fast, accuracy, and adequate for 

most engineering purposes but has difficulty with 

marginal losses, to rectify this problem with Primal LP 

(PLP) OPF solution algorithm. PLP is solving a full ac 

power flow solution iteratively, and changes system 

controls to enforce liberalized constraints while 

minimizing cost. 

The objective function can be written in the following 

form: 

Minimize  ,
o o

F x x u u                       (24) 

Subjected to  ' , 0
o o

g x x u u                 (25) 

 ' , 0
o o

h x x u u                              (26) 

where 
o

x , 
o

u  are the initial values of x  and u  

x , u  are the shifts about the initial points 
'

g , 
'

h  are the linear approximation to the original and 

non linear constraints. 

The solution of the OPF problem can be achieved by 

using the primal linear programming in power world 

simulator. 

V. TEST SYSTEMS RESULTS 

A. 26 Bus Power System Network 

Fig. 1 shows the 26 Bus power system network has 

been modeled in power world simulator. 

 

Figure 1.  26 Bus power system network model 

The generators data and line and bus data of test bus 

systems have been taken from [4], the generators power 

production cost and its power generating limits are given 

in Table I. 

TABLE I.  GENERATOR’S PRODUCTION COST AND LIMITS 

Gen 

No. i
a  

i
b  

i
c  

Min

MW 

Max 

MW 
Min. 

MVAr 

Max. 

MVAr 

1 240 7.0 0.0070 100 500 0 0 

2 200 10 0.0095 50 200 40 250 

3 220 8.5 0.0090 80 300 40 150 

4 200 11 0.0090 50 150 40 80 

5 220 10 0.0080 50 200 40 160 

6 190 12 0.0075 50 120 15 50 

i
a =Fixed cost, 

i
b =Fuel cost, 

i
c =Maintenance cost 

 

Bus 1 is reference or slack bus with its voltage 

adjusted to 1.025 0


 p.u, the system line impedance and 
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capacitive susceptance are given in per unit on a 100-

MVA base. The OPF problem is solved by using Newton 

and PLP methods. 

 

Figure 2.  Comparison voltage between Newton and PLP methods 

Fig. 2 shows 26 bus power system network’s voltage 

profile with Newton and PLP method. The voltage 

maximum and minimum limits are 1.1 (p.u) and 0.9 (p.u) 

at each bus in the system. Compared with PLP method, 

Newton method gives good result to maintain voltage 

stability problem. 

Fig. 3 and Fig. 4 show, the 26 bus power system 

incremental cost of individual generators and composite 

generators curves, the system has six generators. 

 

Figure 3.  26 Bus generators incremental cost curves 

 

Figure 4.  26 Bus generators composite incremental cost curve  

Fig. 5 shows, 26 bus power systems real power 

scheduling at each generating bus in the system with 

Newton method and PLP method to handle the total real 

power demand 1263 MW. 

 

Figure 5.  26 bus real power scheduling graph with Newton method and 
PLP method 

TABLE II.  GENERATORS REAL POWER DISPATCH AND COST OF 

GENERATION 

Gen. Dispatch Newton Method PLP Method 

Gen. No. MW Cost ($/hr) MW Cost ($/hr) 

1 447.69 4776.88 457.98 4914.10 

2 172.00 2198.04 170 2174.55 

3 263.29 3084.97 256 2985.82 

4 135.94 1861.73 130 1782.10 

5 173.76 2286.02 170 2236.20 

6 82.748 1234.33 92 1357.48 

Total 1275.40 15441.97 1275.98 15450.24 

 

Table II shows the real power dispatch of each 

generator and cost of generation with Newton and PLP 

methods. The total real power generation cost with Primal 

LP method is 15450.24 $/hr, and the total generation cost 

with Newton method is 15441.9738 $/hr. Comparing 

these results, it is seen that there is a savings of 8.2662 

$/hr in Newton method. Thus Newton Method gives more 

economical OPF solution and handles marginal well 

losses than Primal LP method for OPF calculation. 

B. IEEE30 Bus Test Systems 

Fig. 6 shows; the IEEE 30Bus power system network 

has been modeled in power world simulator. 

 

Figure 6.  IEEE 30 Bus power system network model 

The generators data and line and bus data of test bus 

systems have been taken from [4], the generators power 

production cost and its power generating limits are given 

in Table III. Bus 1 is reference or slack bus with its 

voltage adjusted to 1.06 0


 p.u, the system line 
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impedance and capacitive susceptance are given in per 

unit on a 100 MVA base. The OPF problem is solved by 

using Newton and PLP methods. 

TABLE III.  GENERATOR’S PRODUCTION COST CURVE AND LIMITS 

Gen. 

No. i
a  

i
b  

i
c  

Min. 

MW 

Max. 

MW 
Min. 

MVar 

Max. 

MVar 

1 100 2.00 0.00375 50 200 0 0 

2 100 1.75 0.00175 20 80 -40 50 

3 100 1.00 0.00625 15 50 -40 40 

4 100 3.25 0.0083 10 35 -10 40 

5 100 3.00 0.0250 10 30 -6 24 

6 100 3.00 0.0250 12 50 -6 24 

 

Figure 7.  Comparison of IEEE 30 bus voltage profile with Newton 
method and PLP method 

Fig. 7 shows, IEEE 30 bus power system network’s 

voltage profile with Newton and PLP method. The 

voltage maximum and minimum limits are 1.1 (p.u) and 

0.9 (p.u) at each bus in the system. Compared with PLP 

method, Newton method gives good result to maintain 

voltage stability problem. 

 

Figure 8.  IEEE 30 bus generators incremental cost curves 

 

Figure 9.  IEEE 30 bus generators composite ic curve 

Fig. 8 and Fig. 9 show, the IEEE 30 bus power system 

incremental cost of individual generators and composite 

generators curves, the system has six generators. 

 

Figure 10.  IEEE 30 bus real power scheduling graph with Newton 
method and PLP method 

Fig. 10 shows the IEEE 30 bus test system real power 

scheduling of each generator in the system with Newton 

and PLP method to handle the total real power demand 

283.40 MW. 

TABLE IV.  GENERATORS REAL POWER DISPATCH AND COST OF 

GENERATION 

Gen. Dispatch NR Method PLP Method 

Gen. No. MW Cost ($/hr) MW Cost ($/hr) 

1 127.98 417.38 128.40 418.61 

2 80 251.2 80 251.2 

3 50 165.63 50 165.63 

4 10 133.33 10 133.33 

5 10 132.5 10 132.5 

6 12 139.6 12 139.6 

Total 289.9 1239.64 290.40 1240.87 

 

Table IV shows the real power dispatch of each 

generator and cost of generation with Newton method 

and PLP method. The total real power generation cost 

with Primal LP method is 1239.64 $/hr, and the total 

generation cost with Newton method is 1240.87 $/hr. it is 

seen that there is a savings of 1.23 $/hr in Newton 

method. It gives more economical OPF solution, voltage 

stability, and handles marginal losses well than Primal LP 

method for OPF calculation. 

VI. CONCLUTION 

The main aim of optimal power flow solution is to 

minimize the total generating cost of the system while 

satisfying the load and losses in the system, maximize 

social welfare, and security of the system. Here the OPF 

problem is solved by classical methods like Newton 

method and PLP method. The 26 and IEEE 30 bus 

systems have been modeled as test bus systems. 

Results comparing between Newton method and PLP 

method, it has been found that the Newton method is 

relatively slow and has problems in determining binding 

constraint. PLP method is fast and efficient in 

determining binding constraints, but has difficulty with 

marginal losses. Finally Newton method gives best 

economical solution for OPF problem than PLP method. 
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