
Multi-Valued Logic Circuit Design and

Implementation

Ben Choi and Kankana Shukla
Computer Science, Louisiana Tech University, USA

Email: pro@BenChoi.org

Abstract—To further increase the speed of computation,

this paper aims to design and implement digital circuits

entirely within the domain of multi-valued logic. In a four-

valued logic circuit, each wire carries two bits at a time,

each logic gate operates two bits at once, and each memory

cell records two bits at one time. To make the multi-valued

computation possible, this paper describes a simple four-

step process for designing multi-valued circuits to

implement any multi-valued functions. The design of a four-

valued adder is provided as an example. This paper also

contributes new designs for multi-valued memory and flip-

flops, which can be extended to be used for infinite-valued

or Fuzzy logic circuits, for fully exploiting many-valued

logic and fuzzy paradigm in hardware. The multi-valued

circuit design methodology and the multi-valued memory

provide the necessary and sufficient tools and components

for designing multi-valued systems entirely within the

domain of multi-valued logic. 

Index Terms—multi-valued logic, fuzzy control, circuit

design, fuzzy memory, fuzzy system

I. INTRODUCTION

The performances of current computers are reaching
their limits. Almost all present day computers are built
based on two-valued logic. In two-valued logic, each
wire can have two states. The performance of current
computer depends mostly on how quickly the states can
be changed, which determines the clock speed. During
the past decades, the clock speed for CPU had doubled
almost every year. In recent years, the clock speed
doubled every 18 months. Now, it has become
progressively difficult to increase the clock speed. The
limit is approaching. Recently, CPU manufacturers are
trying to circumvent the limitation of clock speed by
packing more and more “cores” into a chip, which has
resulted in dual-core or quad-core CPUs. However, this
multi-core approach does not greatly improve the
performance. This is due in part by the limit of the
amount of data that can be transferred between the CPU
and its connected components, which is determined by
the number of pins on the CPU. Using two-value logic
each pin on the CPU can have at most two states, and
again the amount of data that can be transferred is
determined by the clock speed. Thus, the multi-core
approach does not circumvent the limitation.

Manuscript received April 15, 2014; revised July 18, 2014.

Thus, there is a need for an innovative approach in

order to push the speed limit of computing. Now is the

time to depart from the two-valued logic to venture into

multi-valued logic and even into infinite-valued (Fuzzy)

logic. Advancing from two-valued to four-valued logic

provides an progressive approach [1]. Four symbols {0, 1,

2, 3} are needed to distinguish the four values, as shown

in Table I. The four values might represent anything, for

example, the four bases {A, T, C, G} found in DNA, or

probability {0, 1/3, 2/3, 1}. These four values can be

converted to binary numbers {00, 01, 10, 11}, or they

can simply represent integers {0, 1, 2, 3}. It is also

possible to start from the ground up by designing

components needed for constructing four-valued logic

circuits. Each four-valued logic gates will operate two

bits of data at a time, and each memory cell will record

two bits at once. Now, each wire or CPU pin can have

four states, which could double the amount of data that

can be transferred between the CPU and its connected

components without increasing the number of pins on the

CPU. With eight-valued logic, each logic gate operates

three bits of data and CPU pin carries three bits of data.

The extreme case will be the infinite-valued or Fuzzy

logic. Now, a different limit is being pushed.

TABLE I. REPRESENTATIONS FOR A FOUR-VALUED VARIABLE

Symbol DNA Probability Bits Integer

0 A 0 00 0

1 T 1/3 01 1

2 C 2/3 10 2

3 G 1 11 3

To make the multi-valued computation possible, this

paper provides the necessary and sufficient tools and

components for designing multi-valued systems entirely

within the domain of multi-valued logic. We describe a

simple four-step process for designing multi-valued

circuits to implement any multi-valued functions. The

design of a four-valued adder is provided as an example.

By following the simple four-step process, it becomes

very convenient to design multi-valued circuits to

implement any multi-valued functions. We also provide

new designs for multi-valued memory and flip-flops,

which can be extended to be used for infinite-valued or

Fuzzy logic circuits, for fully exploiting many-valued

logic and fuzzy paradigm in hardware.

The remaining of this paper is organized as follows.

Section II outlines the related research and their

International Journal of Electronics and Electrical Engineering Vol. 3, No. 4, August 2015

©2015 Engineering and Technology Publishing 256
doi: 10.12720/ijeee.3.4.256-262

limitations. Section III describes using Post Algebra as

the mathematical foundation that facilitates the design

process of multi-valued circuits. Section IV outlines our

simple four-step process for designing multi-valued

circuits to implement any multi-valued functions. Section

V shows our design of multi-value memory and flip-

flops. Section VI gives the conclusion and outlines the

future research.

II. RELATED RESEARCH

To exploit the multi-valued computation in hardware,

we need the fundamental building blocks for multi-

valued logic circuits: multi-valued logic gates, memory

cells, and flip-flops. However, even these essential logic

gates and memory cells are not yet fully developed.

Currently, many-valued and fuzzy systems [2]-[8] are

usually simulated or implemented by using a fuzzifier to

convert the inputs, using a set of fuzzy rulesfor

processing and inferring, and using a defuzzifier to

convert the results to outputs. To go a step further,

researchers are now researching on many-valued and

fuzzy logic circuits that can fully implement fuzzy

systems.

To make the transition from two-valued to many-

valued logic circuits, researchers were attempting to

adapt CMOS [9], [10] technologies to implement the

many-valued and Fuzzy logic gates. The design of the

AND gate and the OR gate using CMOS technology was

reported [1], [11]-[13]. Other researchers used analog

circuits to implement the many-valued and fuzzy logic

gates [14]-[17]. However, these analog circuits were

more difficult to be fabricated.

Many-valued and fuzzy memory cells or fuzzy flip-

flops were proposed in [8], [18]-[26]. Concept of fuzzy

flip-flop was first mentioned by Hirota [18]. They used

analog gates [27]-[29] for the design their JK-type flip-

flop as discussed in [14]. Hirota[18]defined fuzzy JK

flip-flop based on the binary JK flip-flop but using fuzzy

operators. Their design was based on fuzzy operators

such as t-norm, s-norm, and fuzzy negation. Consider

two fuzzy sets x and y in universe of discourse U, a S-

norm operation [30] is defined as,

)}],(),(max[)(uuu yxyx    Uu

T-norm operation is defined as

)}],(),(min[)(uuu yxyx    Uu

Fuzzy negation is defined as follows:

),(1)(uu xx
 

  Uu

Based on the fuzzy operations, Hirota [18] defined set-

type and reset-type fuzzy flip-flop. Reset-type fuzzy JK

flip-flop has the following characteristic equation:

     )(1)(1)1(tQKtQJtQR 

Characteristic equation for set-type JKfuzzy flip-flop

is as follows

      )(11)()1(tQKtQJtQS 

TABLE II. ONE UNSTABLE CONDITION FOR THE SET-TYPE OR RESET-
TYPE JK FUZZY FLIP-FLOP

Initial Q J K

1

Qf

2

3

0 4 4 4 2 4

2 4 4 4 2 4

4 4 4 2 4 2

6 4 4 2 4 2

We found several unstable conditions for the set-type

and the reset-type JK fuzzy flip-flop defined above.

Some such examples are provided in Table II. While the

initial stored value of Q is 0v and when given 4v for

inputs J and K, the resulting Q will continuously toggling

between 4v and 2v. Similar unstable conditions appears

when initial stored value is 2v and given 4v for inputs J

and K. Other unstable conditions was also observed, but

not shown in the table, for values J=K=6, J=4 K=6, and

J=6 K=4.

Therefore, neither the set-type nor the reset-type alone

can be used as a fuzzy flip-flop. Hirota [18] combined

the characteristics of both set-type and reset-type fuzzy

JK flip flop and introduced a fundamental equation for

fuzzy JK flip flop. The characteristic equation for min-

max type fuzzy JK flip flop is as follows:

     )()()1(tQKtQJKJtQ 

However, above equation also produced unstable

conditions such as some shown in Table II. The

researchers tried to eliminate the above unstable

conditions by introducing a pair of complicated sample

and hold circuits. The sample and hold circuits latch the

output during each clock pulse, thus emulating the

behavior of aflip-flop. However, these circuits were

difficult to design and cumber some to modify. Such

circuits cannot easily be combined with other fuzzy

circuits.

Virant et al. [24] proposed a design of T-type fuzzy

flip-flop. The researchers adapted a strategy similar to

Hirota [18]in the design of the T fuzzy flip-flop. They

introduced the following two equations for T fuzzy flip-

flop[24]:

      )(1,min,)(,1minmax)1(tQTtQTtQ 

       )(1,1max,)(,maxmin)1(tQTtQTtQ 

However, the T fuzzy flip-flop has its own limitation.

For example, it cannot be connected in such a way to

produce a D-type fuzzy flip-flop.

In this paper, we proposed a fuzzy memory cell that

can also function as a D-type fuzzy flip-flop. Our fuzzy

International Journal of Electronics and Electrical Engineering Vol. 3, No. 4, August 2015

©2015 Engineering and Technology Publishing 257

However, we found that the fuzzy memory cells or

flip-flops reported previously, such as JK-type flip-flop

[18]-[20] and T-type flip-flop [24], have their limitations

and cannot fully be used as general fuzzy memory cells.

The flip-flops would not produce the correct results

under certain input conditions.

memory cell can store any value ranging from zero to

one, such as the four-valued case {0, 1/3, 2/3, 1}.

Furthermore, it was built entirely based on fuzzy logic

gates.

III. USING POST ALGEBRA AS FOUNDATION FOR

MULTI-VALUED CIRCUIT DESIGN

This section describes the mathematical foundation of

multi-valued logic that facilitates the design process of

multi-valued circuits. While Boolean algebra provides

the mathematical foundation for designing two-valued

digital circuits, Post algebra provides the mathematical

foundation for designing multi-valued circuits. We

choose the disjoint system of Post algebras of order n≥2

for the reason that the disjoint system facilitates simple

design processes (described in Section 4). The postulates

for a disjoint system of Post algebras is provided in the

following table (based on [31]).

TABLE III. POSTULATES FOR DISJOINT SYSTEM OF POST ALGEBRAS

OF ORDER N≥2

P1 A·B = B·A A+B = B+A

(A·B)·C = A·(B·C) (A+B)+C = A+(B+C)

A·A = A A+A = A

(A+B)·A = A (A·B)+A = A

A·(B+C) = (A·B)+(A·C)

P2 en-1·A = A e0+A = A

ei·ei+1= ei for 0<i<n-2

P3 Ci(A)·Cj(A) = e0
for i ≠ j, 0 ≤ i, j ≤ n-1

C0(A)+C1(A)+…+
Cn-2(A)+Cn-1(A) = en-1

P4 Ci(A·B) =

Ci(A)·[Ci(B)+Ci+1(B)+…
+Cn-1(B)] +

Ci(B)·[Ci(A)+Ci+1(A)+…

+Cn-1(A)]
for i = 0,1,…,n-1

Cn-1(A+B) =

Cn-1(A)+Cn-1(B)

P5 Ci(ej) = e0 for i ≠ j, 0 ≤ i, j ≤ n-1

Cn-1(e0) = e0

Cn-1(en-2) = e0

P6 e1·C1(A)+e2·C2(A)+…+en-1·Cn-1(A) = A

Table III defines a disjoin system of Post algebras of

order n≥2. Where, the A, B, and C are n-valued variables.

The ei for 0 ≤ i ≤ n-1 are n constants. The Ci(x) for 0 ≤ i

≤ n-1 are n disjoint unary operations. The •is the binary

operation that represents AND, while the + is the binary

operation that represents OR.

TABLE IV. BOOLEAN ALGEBRAS ARE POST ALGEBRAS OF ORDER 2

 Input Output

 NOT(A) = A =

 A C0(A) C1(A)

F = e0 0 1 0

T = e1 1 0 1

Boolean algebras are Post algebras of order 2 as

highlighted in Table IV. There are two constants: e0

denoted by 0, and e1 denoted by 1. The Boolean NOT(A)

= C0(A), while C1(A) = A. The • is equivalent to the

Boolean AND operation, while the + is equivalent to the

Boolean OR operation.

In the following, we choose, as an example, the

disjoint system of Post algebras of order n = 4, and called

the system a four-valued logic. As outlined in the

following table, we use A as a 4-valued variable. The 4

constants are denoted by 0, 1, 2, 3, are the 4 disjoint

unary operations C0(A), C1(A), C2(A), and C3(A) are

defined as shown in Table V.

TABLE V. POST ALGEBRAS OF ORDER 4 (FOUR-VALUED LOGIC)

 Input Output

 A C0(A) C1(A) C2(A) C3(A)

F=e0 0 3 0 0 0

e1 1 0 3 0 0

e2 2 0 0 3 0

T=e3 3 0 0 0 3

The 4-valued AND, OR operations are defined as

shown in Table VI, where the AND operation produce as

output the minimum of (A, B), while the OR operation

produce as output the Maximum of (A, B).

TABLE VI. FOUR-VALUED AND (MIN), OR (MAX)

Input Output

 AND(A,B) OR(A,B)

A B A·B A+B

0 0 0 0

0 1 0 1

0 2 0 2

0 3 0 3

1 0 0 1

1 1 1 1

1 2 1 2

1 3 1 3

2 0 0 2

2 1 1 2

2 2 2 2

2 3 2 3

3 0 0 3

3 1 1 3

3 2 2 3

3 3 3 3

IV. SIMPLE FOUR-STEP PROCESS FOR DESIGNING

MULTI-VALUED CIRCUITS

Based on the disjoint system of Post algebras of order

n≥2 defined in Section III, we outline a simple four-step

process for designing multi-valued circuits to implement

any multi-valued functions. The four steps are: (0)

Creating a truth table to define the function; (1)

Connecting each input x to n Ci(x) gates; (2) Creating an

AND gate for each output instance having a value > 0;

and (3) Connecting the outputs of all the AND gates to

an OR gate, which produces the outputs of the required

function. These 4 steps are described in more details in

the following sections. By following this simple four-

International Journal of Electronics and Electrical Engineering Vol. 3, No. 4, August 2015

©2015 Engineering and Technology Publishing 258

TABLE VII. TRUTH TABLE DEFINING A FOUR-VALUED ADDER

Input Output

 41x 40x

A B K S

0 0 0 0

0 1 0 1

0 2 0 2

0 3 0 3

1 0 0 1

1 1 0 2

1 2 0 3

1 3 1 0

2 0 0 2

2 1 0 3

2 2 1 0

2 3 1 1

3 0 0 3

3 1 1 0

3 2 1 1

3 3 1 2

As shown in Table VII, all possible input

combinations are shown in column A and B. The results

of the addition is encoded by two outputs K and S, where

K stands for carry and S stands for sum, and the total

value is 4K+S. The column K defines the function

required to produce K as output, and the column S

defines the function required to produce S as output.

Continuing the above example of designing an adder,

the adder have two inputs, A and B. Now, we connect

input A to 4 Ci(A) gates:

C0(A), C1(A), C2(A), C3(A)

Similarly, we connect input B to 4 Ci(B) gates:

C0(B), C1(B), C2(B), C3(B)

The results of these connection is shown in Fig. 1.

Step 2. AND gates: Creating an AND gate for each

output instance having a value > 0.

For each input instance A0, A1, …Am-1 =x0, x1, …xm-1

that produce an output e>0, create an AND gate

connecting:

Cx0(A0)·Cx1(A1)·…·Cxm-1(Am-1)·e

For e = en-1, there is no need to connect the AND gate

to e, which is the results of simplification based on the

postulate P1 that is en-1·A = A.

Continuing the example of designing an adder, for the

function that produce S as output (in the S column of the

truth table), there are 9 instances that produce output e >

0. For example, referring to the truth table, when inputs

A=0, B=1, the output S=1, in this case we create an AND

gate connecting: C0(A)·C1(B)·1, in which since A=0 so

the AND gate connects to the output of C0(A) gate (from

Step 1), since B=1 so the AND gate connects to the

output of C1(B) gate (from Step 1), and since S=1 so the

AND gate connects to 1. When inputs A=0, B=2, the

output S=2, in this case we create an AND gate

connecting: C0(A)·C2(B)·2,in which since A=0 so the

AND gate connects to the output of C0(A) gate, since

B=2 so the AND gate connects to the output of C2(B)

gate, and since S=2 so the AND gate connects to 2. And,

when inputs A=0, B=3, the output S=3, in this case we

create an AND gate connecting: C0(A)·C3(B)·3, which is

simplified to C0(A)·C3(B). We create 9 AND gates for

the 9 instances as shown in the below and the

connections are shown in Fig. 1.

0

1

2

3

0

1

2

3

1BA 2

m

m

m

m

m

m

m

m

m

m

m

m

m

m

m

m

m

m

S

KM

M

Figure 1. Four-Valued adder circuit

C0(A)·C1(B)·1, C0(A)·C2(B)·2, C0(A)·C3(B),

C1(A)·C0(B)·1, C1(A)·C1(B)·2, C1(A)·C2(B),

C2(A)·C0(B)·2, C2(A)·C1(B), C2(A)·C3(B)·1,

C3(A)·C0(B), C3(A)·C2(B)·1, C3(A)·C3(B)·2

Similarly, for the function that produce K as output (in

the Kcolumn of the truth table), there are 6 instances that

produce output e > 0. We create 6 AND gates as shown

in the below and the connections are shown in Fig. 1.

C1(A)·C3(B)·1, C2(A)·C2(B)·1, C2(A)·C3(B)·1,

C3(A)·C1(B)·1, C3(A)·C2(B)·1, C3(A)·C3(B)·1

International Journal of Electronics and Electrical Engineering Vol. 3, No. 4, August 2015

©2015 Engineering and Technology Publishing 259

step process, implementation of any multi-valued

function becomes feasible.

Step 0. Truth Table: Creating a truth table to define the

multi-valued functions.

As an example, we choose to design an adder that adds

two 4-valued numbers A, B. We create atruth tableto

define the required functions.

Step 1. Ci(x) gates: Connecting each input x to n Ci(x)

gates for 0 ≤ i ≤ n-1.

Step 3: OR gate: Connecting the outputs of all the

AND gates to an OR gate, which produces the outputs of

the required function.

Finishing the example of designing an adder for the

function that produce S as output (in the S column of the

truth table), we connect the outputs of all the 9 AND

gates (from Step 2) to an OR gate, as defined below:

S = C0(A)·C1(B)·1 + C0(A)·C2(B)·2 + C0(A)·C3(B) +

C1(A)·C0(B)·1 + C1(A)·C1(B)·2 + C1(A)·C2(B) +

C2(A)·C0(B)·2 + C2(A)·C1(B) + C2(A)·C3(B)·1 +

C3(A)·C0(B) + C3(A)·C2(B)·1 + C3(A)·C3(B)·2

Similarly, for the function that produce K as output (in

the K column of the truth table), we connect the outputs

of all the 6 AND gates (from Step 2) to an OR gate, as

defined below:

K = C1(A)·C3(B)·1 + C2(A)·C2(B)·1 + C2(A)·C3(B)·1 +

C3(A)·C1(B)·1 + C3(A)·C2(B)·1 + C3(A)·C3(B)·1

The results all the connections are shown in Fig. 1,

which is the four-valued circuit that implements the four-

valued addition of two four-valued numbers.

V. DESIGNING MULTI-VALUED MEMORY

Multi-valued memory is a necessary component for

designing multi-valued systems. In this section, we

present our design of a D-type fuzzy flip-flop or fuzzy

memory cell [32]. Our design is based on an extension of

the idea of binary D flip-flop. Excitation table for binary

D flip flop is shown in Table VIII. The next state Q(t+1)

of a D fuzzy flip-flop is characterized as a function of

both the present state Q(t)and the input state D. Min term

expression for Q(t+1) is

Above equation is also referred to as the characteristic

equation of the D Flip-flop. A mutually equivalent

equation can be derived from Table 8 consisting of max

terms

   )()()1(tQDtQDtQ 

TABLE VIII. EXCITATION TABLE FOR BINARY D FLIP-FLOP

Above two equations can be transformed to fuzzy

domain by replacing the binary operators by fuzzy

operators. They can be redefined using min-max type

operation and fuzzy negation as follows:

    DtQDtQtQ )()(1)1(

    DtQDtQtQ )()(1)1(

In which the  represents min operation and 

represents max operation. These two equations, however,

do not completely transform D flip-flop to the fuzzy

domain. Hence, we proposed an equation that has the

characteristics of both the equations and also exhibits an

analogy with the binary counterpart, as follows:

      DtQtQDDtQ )(1)()1(

This equation has led to realization of the circuit of D-

type fuzzy flip-flop. The design of the new D fuzzy flip-

flop is shown in Fig. 2, in which the gates are fuzzy logic

AND, OR, and NOT gates. This D-type fuzzy flip-flop

can be used as a fuzzy memory cell.

Figure 2. A new multi-valued memory cell

Working of the D-type fuzzy flip-flop (shown in Fig. 2)

can be understood by initially considering binary values

0 or 1. If the value of the input D is set at either 0 or 1

regardless the initial value of Q at time t, Q will be set to

the value of D. Any value ranging from 0 to 1 also

produce the required results. To get an initial idea of the

behavior of the D fuzzy flip-flop, we simulated our

design using MATLAB and Simulink [33]. Fig. 3 shows

the setup of the simulation and the results are shown in

Fig. 4. The results show that the D fuzzy flip-flop is

simply storing whatever value provided on the input D. It

is simply a fuzzy memory cell.

Figure 3. Simulation setup of multi-valued memory cell using
simulink

(a) Input D

International Journal of Electronics and Electrical Engineering Vol. 3, No. 4, August 2015

©2015 Engineering and Technology Publishing 260

)()()1(tQDtDQtQ 

(b) Output Q

Figure 4. Simulated result of multi-valued memory cell

We extended the fuzzy memory cell to clocked D

fuzzy flip-flop. Fig. 5 shows our design of the fuzzy flip-

flop. This clocked D fuzzy flip-flop can be used in the

design of sequential fuzzy circuits.

Figure 5. Clocked D-type fuzzy flip-flop

VI. CONCLUSION AND FUTURE RESEARCH

Now is the time to depart from the two-valued logic to

venture into multi-valued logic and even into infinite-

valued or Fuzzy logic. To make multi-valued

computation possible, this paper provides the necessary

tools for designing multi-valued systems entirely within

the domain of multi-valued logic. We describe a simple

four-step process for feasible design of multi-valued

circuits to implement any multi-valued function.

We also provide designs of memory cells that can

store any multi-valued variable. The memory cell is the

first D-type fuzzy flip-flop that can also be used as a

fuzzy memory cell. We also present the circuit of a

clocked D-type fuzzy flip-flop that can be used in the

design of sequential fuzzy circuits. The fuzzy flip-flop is

designed entire in the fuzzy domain using fuzzy AND

gate, fuzzy OR gate, and fuzzy NOT gate. Thus, the

realization of the flip-flop depends on the realization of

the fuzzy logic gates.

The implementation of multi-valued the logic gates,

including the AND, OR, NOT, and Disjoin (Ci(x)) gates,

in integrated circuits can be found in [1], [32], [34]. Thus,

it would be feasible to implement the designed multi-

valued circuits in integrated circuits.

Using the simple four-step process to design multi-

valued circuits do not necessary provide the most

simplified circuits. In most case, the circuits can further

be simplified, which can be done by algebraic

manipulation based on the postulates for disjoint system

of Post algebras provided in Section III.

The next stage for future research will be to use the

multi-valued circuit design methodology and memory

cells to design large-scalecircuits for fully exploiting

multi-valued logics and fuzzy paradigms in hardware.

REFERENCES

[1] B. Choi, “Advancing from two to four valued logic circuits,” in

Proc. IEEE International Conference on Industrial Technology,

February 2013.
[2] P. Marinos, “Fuzzy logic and its application to switching systems,”

IEEE Transactions on Computing, vol. C-18, no. 4, pp. 343-348,

Apr. 1969.
[3] L. A. Zadeh, “Fuzzy logic - computing with words,” IEEE

Transactions on Fuzzy Systems, vol. 4, pp. 103-11, 1996.

[4] L. A. Zadeh, “The concept of linguistic variables and its

application approximate reasoning,” Information Sciences, pp. 43-

80, 1975.

[5] J. M. Mendel, “Fuzzy logic systems for engineering: A tutorial,”
in Proc. IEEE, vol. 83, no. 3, March 1995.

[6] C. Isik, “Fuzzy logic: Principles, applications and perspectives,”
SAE (Society of Automotive Engineers) Transactions, vol. 100, pp.

393-396, 1991.

[7] J. W. Fattaruso, S. S. M. Shetti, and J. B. Barton, “A fuzzy logic
inference processor,” IEEE Journal of Solid State Circuits, vol.

29, no. 4, pp. 397-402, Apr. 1994.

[8] G. Leslaw and J. Kluska, “Family of fuzzy J-K flip-flops based on
bounded product, bounded sum and complementation,” IEEE

Transactions on Systems, Man, and Cybernetics, Part B:

Cybernetics, vol. 28, no. 6, pp. 861-868, Dec. 1998.
[9] N. H. E. Weste and K. Eshraghian, Principles of CMOS VLSI

Design, Addison-Wesley Publishing Company, 1994, pp. 61-69.

[10] R. J. Baker, CMOS Circuit Design, Layout, and Simulation, 2nd
ed. B. R. Jacob, 1964.

[11] V. Catania, A. Puliafito, M. Russo, L. Vita, “A VLSI fuzzy

inference processor based on a discrete analog approach,” IEEE
Transactions on Fuzzy Systems, vol. 2, no. 2, pp. 93-106, May

1994.

[12] G. Ascia, V. Catania, and M. Russo, “VLSI hardware architecture
for complex fuzzy systems,” IEEE Transaction on Fuzzy Systems,

vol. 7, no. 5, pp. 553-570, Oct. 1999.

[13] G. Ascia and V. Catania, “A high performance processor for
application based on fuzzy logic,” in Proc. Fuzzy Systems

Conference, vol. 3, Aug. 22-25, 1999, pp. 1685-1690.

[14] T. Yamakawa, T. Inoue, F. Ueno, and Y. Shirai; “Implementation
of fuzzy logic hardware systems-three fundamental arithmetic

circuits,” Trans. Inst. Electron Common. Eng. Japan, vol. J63-C,

no. 10. pp. 720-721, Oct. 1980.
[15] K. Hirota, “Fuzzy logic and its hardware implementation,” in

Proc. 2nd New Zealand Two-Stream International Conference on

Artificial Neural Networks and Expert systems, 1995, pp. 102.

[16] J. L. Perez and M. A. Banuloes, “Electronic model on fuzzy gates,”

Journal of the Mexican Society of Instrumentation, vol. 3, pp. 43-

46, 1995.
[17] V. Catania and M. Russo, “Analog gates for a VLSI fuzzy

processor,” in Proc. 8th International Conference of VLSI Design,

Jan. 1995.
[18] K. Ozawa, K. Hirota, L. T. Koczy, W. Pedrycz, and N. Ikoma,

“Summary of fuzzy flip-flop,” in Proc. International Joint

Conference of the 4th IEEE International Conference on Fuzzy
Systems and the 2nd International Fuzzy Engineering Symposium,

1995, pp. 1641-1648.

[19] K. Hirota and K. Ozawa, “The concept of fuzzy flip-flop,” IEEE
Transactions on Systems, Man and Cybernetics, vol. 19, no. 5, pp.

980-997, 1989.

[20] K. Hirota and W. Pedrycz, “Designing sequential systems with
fuzzy J-K flip-flops,” Fuzzy Sets and Systems, vol. 39, no. 3, pp.

261, Feb. 15, 1991.

International Journal of Electronics and Electrical Engineering Vol. 3, No. 4, August 2015

©2015 Engineering and Technology Publishing 261

[21] D. McLeod, W. Pedrycz, and J. Diamond, “Fuzzy JK flip-flops as

computational structures: Design and implementation,” IEEE

Transactions on Circuits and Systems II: Analog and Digital
Signal Processing, vol. 41, no. 3, pp. 215-226, Mar. 1994.

[23] K. Hirota and W. Pedrycz, “Design of fuzzy systems with fuzzy
flip-flops,” IEEE Transactions on Systems, Man and Cybernetics,

vol. 25, no. 1, pp. 169-176, Jan 1995.

[24] J. Virant, N. Zimic, and M. Mraz, “T-type fuzzy memory cells,”
Fuzzy Sets and Systems, vol. 102, no. 2, pp. 175-183, Mar. 1,

1999.

[25] S. M. Kia and S. Parmeswaran, “Designs for self checking flip-
flops,” IEE Proceedings: Computers and Digital Techniques, vol.

145, no. 2, pp. 81-88, Mar. 1998.

[26] T. Miki and T. Yamakawa, “Fuzzy inference on an analog fuzzy
chip,” IEEE Micro, pp. 8-18, 1995.

[27] T. Kettner, C. Heite, and K. Schumacher, “Analog CMOS

realization of fuzzy logic membership functions,” IEEE Journal
of Solid State Circuits, vol. 28, no. 7, pp. 857-886, Jul. 1993.

[28] H. Watanabe, W. D. Dettloff, and K. E. Yount, “A VLSI fuzzy

logic controller with reconfigurable, cascadable architecture,”
IEEE Journal of Solid-State Circuits, vol. 25, pp. 376-382, Apr.

1990.

[29] D. De Venuto, M. J. Ohletz, and B. Ricco, “Testing of analogue
circuits via (standard) digital gates,” in Proc. International

Symposium on Quality Electronic Design, Mar. 18-21, 2002, pp.

112-119.
[30] I. Baturone, A. Barriga, S. Sanchez-Solano, and D. R. Lopez,

Microelectronic Design of Fuzzy Logic-Based Systems, CRC

Press, 2000.
[31] G. Epstein, Multiple-Valued Logic Design: An Introduction,

Institute of Physics Publishing, 1993.

[32] B. Choi and K. Tipnis, “New components for building fuzzy logic
circuits,” in Proc. Fourth International Conference on Fuzzy

Systems and Knowledge Discovery, vol. 2, 2007, pp. 586-590.

[33] “Simulink: Simulation and model based design,” Version 6, The
Mathworks, 2005.

[34] G. Wu, L. Cai, and Q. Li, “Ternary logic circuit design based on
single electron transistors,” Journal of Semiconductors, vol. 30,

no. 2, Feb. 2009.

Dr. Ben Choi has a Ph.D. degree in

Electrical and Computer Engineering and
also has a Pilot certificate for flying airplanes

and helicopters. He is an Associate Professor

in Computer Science at Louisiana Tech
University. He received his Ph.D., M.S., and

B.S. degrees from The Ohio State University,

studied Computer Science, Computer
Engineering, and Electrical Engineering. His

areas of research include Humanoid Robots,

Artificial Intelligence, Machine Learning, Intelligent Agents, Semantic
Web, Data Mining, Fuzzy Systems, and Parallel Computing. His future

research includes developing advanced software and hardware methods

for building intelligent machines and theorizing the Universe as a
Computer.

Kankana Shukla is a Masters student in

C omp u t e r S c i en c e an d B i omed ic a l

Engineering at Louisiana Tech University.
She completed her bachelors in Electronics

and Instrumentation. Her research interest

includes Data Mining, Web Mining, Big
D a t a An a lys i s , M ach in e Lea r n in g ,

Bioinformatics, Biostatistics, Robotics and

Artificial Intelligence. Her future work
includes pursuing a Ph.D. degree in Data

Mining and Biostatistics.

International Journal of Electronics and Electrical Engineering Vol. 3, No. 4, August 2015

©2015 Engineering and Technology Publishing 262

[22] K. Ozawa, K. Hirota, L. T. Koczy, and K. OMori, “Algebraic
fuzzy flip-flop circuits,” Fuzzy Sets and Systems, vol. 39, no. 2, pp.

215, Jan. 25, 1991.

