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Abstract—To further increase the speed of computation, 

this paper aims to design and implement digital circuits 

entirely within the domain of multi-valued logic. In a four-

valued logic circuit, each wire carries two bits at a time, 

each logic gate operates two bits at once, and each memory 

cell records two bits at one time. To make the multi-valued 

computation possible, this paper describes a simple four-

step process for designing multi-valued circuits to 

implement any multi-valued functions. The design of a four-

valued adder is provided as an example. This paper also 

contributes new designs for multi-valued memory and flip-

flops, which can be extended to be used for infinite-valued 

or Fuzzy logic circuits, for fully exploiting many-valued 

logic and fuzzy paradigm in hardware. The multi-valued 

circuit design methodology and the multi-valued memory 

provide the necessary and sufficient tools and components 

for designing multi-valued systems entirely within the 

domain of multi-valued logic.  

 

Index Terms—multi-valued logic, fuzzy control, circuit 

design, fuzzy memory, fuzzy system 

 

I. INTRODUCTION 

The performances of current computers are reaching 
their limits. Almost all present day computers are built 
based on two-valued logic. In two-valued logic, each 
wire can have two states. The performance of current 
computer depends mostly on how quickly the states can 
be changed, which determines the clock speed. During 
the past decades, the clock speed for CPU had doubled 
almost every year. In recent years, the clock speed 
doubled every 18 months. Now, it has become 
progressively difficult to increase the clock speed. The 
limit is approaching. Recently, CPU manufacturers are 
trying to circumvent the limitation of clock speed by 
packing more and more “cores” into a chip, which has 
resulted in dual-core or quad-core CPUs. However, this 
multi-core approach does not greatly improve the 
performance. This is due in part by the limit of the 
amount of data that can be transferred between the CPU 
and its connected components, which is determined by 
the number of pins on the CPU. Using two-value logic 
each pin on the CPU can have at most two states, and 
again the amount of data that can be transferred is 
determined by the clock speed. Thus, the multi-core 
approach does not circumvent the limitation. 
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Thus, there is a need for an innovative approach in 

order to push the speed limit of computing. Now is the 

time to depart from the two-valued logic to venture into 

multi-valued logic and even into infinite-valued (Fuzzy) 

logic. Advancing from two-valued to four-valued logic 

provides an progressive approach [1]. Four symbols {0, 1, 

2, 3} are needed to distinguish the four values, as shown 

in Table I. The four values might represent anything, for 

example, the four bases {A, T, C, G} found in DNA, or 

probability {0, 1/3, 2/3, 1}. These four values can be 

converted to binary numbers {00, 01, 10, 11}, or they 

can simply represent integers {0, 1, 2, 3}. It is also 

possible to start from the ground up by designing 

components needed for constructing four-valued logic 

circuits. Each four-valued logic gates will operate two 

bits of data at a time, and each memory cell will record 

two bits at once. Now, each wire or CPU pin can have 

four states, which could double the amount of data that 

can be transferred between the CPU and its connected 

components without increasing the number of pins on the 

CPU. With eight-valued logic, each logic gate operates 

three bits of data and CPU pin carries three bits of data. 

The extreme case will be the infinite-valued or Fuzzy 

logic. Now, a different limit is being pushed. 

TABLE I.  REPRESENTATIONS FOR A FOUR-VALUED VARIABLE 

Symbol DNA Probability Bits Integer 

0 A 0 00 0 

1 T 1/3 01 1 

2 C 2/3 10 2 

3 G 1 11 3 

 

To make the multi-valued computation possible, this 

paper provides the necessary and sufficient tools and 

components for designing multi-valued systems entirely 

within the domain of multi-valued logic. We describe a 

simple four-step process for designing multi-valued 

circuits to implement any multi-valued functions. The 

design of a four-valued adder is provided as an example. 

By following the simple four-step process, it becomes 

very convenient to design multi-valued circuits to 

implement any multi-valued functions. We also provide 

new designs for multi-valued memory and flip-flops, 

which can be extended to be used for infinite-valued or 

Fuzzy logic circuits, for fully exploiting many-valued 

logic and fuzzy paradigm in hardware. 

The remaining of this paper is organized as follows. 

Section II outlines the related research and their 
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limitations. Section III describes using Post Algebra as 

the mathematical foundation that facilitates the design 

process of multi-valued circuits. Section IV outlines our 

simple four-step process for designing multi-valued 

circuits to implement any multi-valued functions. Section 

V shows our design of multi-value memory and flip-

flops. Section VI gives the conclusion and outlines the 

future research. 

II. RELATED RESEARCH 

To exploit the multi-valued computation in hardware, 

we need the fundamental building blocks for multi-

valued logic circuits: multi-valued logic gates, memory 

cells, and flip-flops. However, even these essential logic 

gates and memory cells are not yet fully developed. 

Currently, many-valued and fuzzy systems [2]-[8] are 

usually simulated or implemented by using a fuzzifier to 

convert the inputs, using a set of fuzzy rulesfor 

processing and inferring, and using a defuzzifier to 

convert the results to outputs. To go a step further, 

researchers are now researching on many-valued and 

fuzzy logic circuits that can fully implement fuzzy 

systems. 

To make the transition from two-valued to many-

valued logic circuits, researchers were attempting to 

adapt CMOS [9], [10] technologies to implement the 

many-valued and Fuzzy logic gates. The design of the 

AND gate and the OR gate using CMOS technology was 

reported [1], [11]-[13]. Other researchers used analog 

circuits to implement the many-valued and fuzzy logic 

gates [14]-[17]. However, these analog circuits were 

more difficult to be fabricated. 

Many-valued and fuzzy memory cells or fuzzy flip-

flops were proposed in [8], [18]-[26]. Concept of fuzzy 

flip-flop was first mentioned by Hirota [18]. They used 

analog gates [27]-[29] for the design their JK-type flip-

flop as discussed in [14]. Hirota[18]defined fuzzy JK 

flip-flop based on the binary JK flip-flop but using fuzzy 

operators. Their design was based on fuzzy operators 

such as t-norm, s-norm, and fuzzy negation. Consider 

two fuzzy sets x and y in universe of discourse U, a S-

norm operation [30] is defined as, 

)}],(),(max[)( uuu yxyx     Uu  

T-norm operation is defined as 

)}],(),(min[)( uuu yxyx     Uu  

Fuzzy negation is defined as follows: 

),(1)( uu xx
 

  Uu  

Based on the fuzzy operations, Hirota [18] defined set-

type and reset-type fuzzy flip-flop. Reset-type fuzzy JK 

flip-flop has the following characteristic equation: 

     )(1)(1)1( tQKtQJtQR   

Characteristic equation for set-type JKfuzzy flip-flop 

is as follows 

      )(11)()1( tQKtQJtQS   

TABLE II.  ONE UNSTABLE CONDITION FOR THE SET-TYPE OR RESET-
TYPE JK FUZZY FLIP-FLOP 

Initial Q J K 
 

1 

Qf 

2 

 

3 

0 4 4 4 2 4 

2 4 4 4 2 4 

4 4 4 2 4 2 

6 4 4 2 4 2 

 

We found several unstable conditions for the set-type 

and the reset-type JK fuzzy flip-flop defined above. 

Some such examples are provided in Table II. While the 

initial stored value of Q is 0v and when given 4v for 

inputs J and K, the resulting Q will continuously toggling 

between 4v and 2v. Similar unstable conditions appears 

when initial stored value is 2v and given 4v for inputs J 

and K. Other unstable conditions was also observed, but 

not shown in the table, for values J=K=6, J=4 K=6, and 

J=6 K=4. 

Therefore, neither the set-type nor the reset-type alone 

can be used as a fuzzy flip-flop. Hirota [18] combined 

the characteristics of both set-type and reset-type fuzzy 

JK flip flop and introduced a fundamental equation for 

fuzzy JK flip flop. The characteristic equation for min-

max type fuzzy JK flip flop is as follows: 

     )()()1( tQKtQJKJtQ   

However, above equation also produced unstable 

conditions such as some shown in Table II. The 

researchers tried to eliminate the above unstable 

conditions by introducing a pair of complicated sample 

and hold circuits. The sample and hold circuits latch the 

output during each clock pulse, thus emulating the 

behavior of aflip-flop. However, these circuits were 

difficult to design and cumber some to modify. Such 

circuits cannot easily be combined with other fuzzy 

circuits. 

Virant et al. [24] proposed a design of T-type fuzzy 

flip-flop. The researchers adapted a strategy similar to 

Hirota [18]in the design of the T fuzzy flip-flop. They 

introduced the following two equations for T fuzzy flip-

flop[24]: 

      )(1,min,)(,1minmax)1( tQTtQTtQ   

       )(1,1max,)(,maxmin)1( tQTtQTtQ   

However, the T fuzzy flip-flop has its own limitation. 

For example, it cannot be connected in such a way to 

produce a D-type fuzzy flip-flop. 

In this paper, we proposed a fuzzy memory cell that 

can also function as a D-type fuzzy flip-flop. Our fuzzy 
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However, we found that the fuzzy memory cells or 

flip-flops reported previously, such as JK-type flip-flop 

[18]-[20] and T-type flip-flop [24], have their limitations 

and cannot fully be used as general fuzzy memory cells. 

The flip-flops would not produce the correct results 

under certain input conditions.



memory cell can store any value ranging from zero to 

one, such as the four-valued case {0, 1/3, 2/3, 1}. 

Furthermore, it was built entirely based on fuzzy logic 

gates. 

III. USING POST ALGEBRA AS FOUNDATION FOR 

MULTI-VALUED CIRCUIT DESIGN 

This section describes the mathematical foundation of 

multi-valued logic that facilitates the design process of 

multi-valued circuits. While Boolean algebra provides 

the mathematical foundation for designing two-valued 

digital circuits, Post algebra provides the mathematical 

foundation for designing multi-valued circuits. We 

choose the disjoint system of Post algebras of order n≥2 

for the reason that the disjoint system facilitates simple 

design processes (described in Section 4). The postulates 

for a disjoint system of Post algebras is provided in the 

following table (based on [31]). 

TABLE III.  POSTULATES FOR DISJOINT SYSTEM OF POST ALGEBRAS 

OF ORDER N≥2 

P1 A·B = B·A A+B = B+A 

(A·B)·C = A·(B·C) (A+B)+C = A+(B+C) 

A·A = A A+A = A 

(A+B)·A = A (A·B)+A = A 

A·(B+C) = (A·B)+(A·C) 

P2 en-1·A = A e0+A = A 

ei·ei+1= ei  for 0<i<n-2  

P3 Ci(A)·Cj(A) = e0 
for i ≠ j,   0 ≤ i, j ≤ n-1 

C0(A)+C1(A)+…+ 
Cn-2(A)+Cn-1(A) = en-1 

P4 Ci(A·B) = 

Ci(A)·[Ci(B)+Ci+1(B)+…
+Cn-1(B)] + 

Ci(B)·[Ci(A)+Ci+1(A)+…

+Cn-1(A)] 
for i = 0,1,…,n-1 

Cn-1(A+B) =  

Cn-1(A)+Cn-1(B) 

P5 Ci(ej) = e0   for i ≠ j,   0 ≤ i, j ≤ n-1 

Cn-1(e0) = e0 

Cn-1(en-2) = e0 

P6 e1·C1(A)+e2·C2(A)+…+en-1·Cn-1(A) = A 

 

Table III defines a disjoin system of Post algebras of 

order n≥2. Where, the A, B, and C are n-valued variables. 

The ei for 0 ≤ i ≤ n-1 are n constants. The Ci(x) for 0 ≤ i 

≤ n-1 are n disjoint unary operations. The •is the binary 

operation that represents AND, while the + is the binary 

operation that represents OR. 

TABLE IV.  BOOLEAN ALGEBRAS ARE POST ALGEBRAS OF ORDER 2 

 Input Output 

  NOT(A) = A = 

 A C0(A) C1(A) 

F = e0 0 1 0 

T = e1 1 0 1 

 

Boolean algebras are Post algebras of order 2 as 

highlighted in Table IV. There are two constants: e0 

denoted by 0, and e1 denoted by 1. The Boolean NOT(A) 

= C0(A), while C1(A) = A. The • is equivalent to the 

Boolean AND operation, while the + is equivalent to the 

Boolean OR operation. 

In the following, we choose, as an example, the 

disjoint system of Post algebras of order n = 4, and called 

the system a four-valued logic. As outlined in the 

following table, we use A as a 4-valued variable. The 4 

constants are denoted by 0, 1, 2, 3, are the 4 disjoint 

unary operations C0(A), C1(A), C2(A), and C3(A) are 

defined as shown in Table V.  

TABLE V.  POST ALGEBRAS OF ORDER 4 (FOUR-VALUED LOGIC) 

 Input Output 

 A C0(A) C1(A) C2(A) C3(A) 

F=e0 0 3 0 0 0 

e1 1 0 3 0 0 

e2 2 0 0 3 0 

T=e3 3 0 0 0 3 

 

The 4-valued AND, OR operations are defined as 

shown in Table VI, where the AND operation produce as 

output the minimum of (A, B), while the OR operation 

produce as output the Maximum of (A, B). 

TABLE VI.  FOUR-VALUED AND (MIN), OR (MAX) 

Input Output 

  AND(A,B) OR(A,B) 

A B A·B A+B 

0 0 0 0 

0 1 0 1 

0 2 0 2 

0 3 0 3 

1 0 0 1 

1 1 1 1 

1 2 1 2 

1 3 1 3 

2 0 0 2 

2 1 1 2 

2 2 2 2 

2 3 2 3 

3 0 0 3 

3 1 1 3 

3 2 2 3 

3 3 3 3 

IV. SIMPLE FOUR-STEP PROCESS FOR DESIGNING 

MULTI-VALUED CIRCUITS 

Based on the disjoint system of Post algebras of order 

n≥2 defined in Section III, we outline a simple four-step 

process for designing multi-valued circuits to implement 

any multi-valued functions. The four steps are: (0) 

Creating a truth table to define the function; (1) 

Connecting each input x to n Ci(x) gates; (2) Creating an 

AND gate for each output instance having a value > 0; 

and (3) Connecting the outputs of all the AND gates to 

an OR gate, which produces the outputs of the required 

function. These 4 steps are described in more details in 

the following sections. By following this simple four-
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TABLE VII.  TRUTH TABLE DEFINING A FOUR-VALUED ADDER 

Input Output 

  41x 40x 

A B K S 

0 0 0 0 

0 1 0 1 

0 2 0 2 

0 3 0 3 

1 0 0 1 

1 1 0 2 

1 2 0 3 

1 3 1 0 

2 0 0 2 

2 1 0 3 

2 2 1 0 

2 3 1 1 

3 0 0 3 

3 1 1 0 

3 2 1 1 

3 3 1 2 

 

As shown in Table VII, all possible input 

combinations are shown in column A and B. The results 

of the addition is encoded by two outputs K and S, where 

K stands for carry and S stands for sum, and the total 

value is 4K+S. The column K defines the function 

required to produce K as output, and the column S 

defines the function required to produce S as output. 

 

 

Continuing the above example of designing an adder, 

the adder have two inputs, A and B. Now, we connect 

input A to 4 Ci(A) gates: 

C0(A), C1(A), C2(A), C3(A) 

Similarly, we connect input B to 4 Ci(B) gates: 

C0(B), C1(B), C2(B), C3(B) 

The results of these connection is shown in Fig. 1. 

Step 2. AND gates: Creating an AND gate for each 

output instance having a value > 0. 

For each input instance A0, A1, …Am-1 =x0, x1, …xm-1 

that produce an output e>0, create an AND gate 

connecting: 

Cx0(A0)·Cx1(A1)·…·Cxm-1(Am-1)·e 

For e = en-1, there is no need to connect the AND gate 

to e, which is the results of simplification based on the 

postulate P1 that is en-1·A = A. 

Continuing the example of designing an adder, for the 

function that produce S as output (in the S column of the 

truth table), there are 9 instances that produce output e > 

0. For example, referring to the truth table, when inputs 

A=0, B=1, the output S=1, in this case we create an AND 

gate connecting: C0(A)·C1(B)·1, in which since A=0 so 

the AND gate connects to the output of C0(A) gate (from 

Step 1), since B=1 so the AND gate connects to the 

output of C1(B) gate (from Step 1), and since S=1 so the 

AND gate connects to 1. When inputs A=0, B=2, the 

output S=2, in this case we create an AND gate 

connecting: C0(A)·C2(B)·2,in which since A=0 so the 

AND gate connects to the output of C0(A) gate, since 

B=2 so the AND gate connects to the output of C2(B) 

gate, and since S=2 so the AND gate connects to 2. And, 

when inputs A=0, B=3, the output S=3, in this case we 

create an AND gate connecting: C0(A)·C3(B)·3, which is 

simplified to C0(A)·C3(B). We create 9 AND gates for 

the 9 instances as shown in the below and the 

connections are shown in Fig. 1. 

0
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Figure 1.  Four-Valued adder circuit 

C0(A)·C1(B)·1,  C0(A)·C2(B)·2,  C0(A)·C3(B), 

C1(A)·C0(B)·1,  C1(A)·C1(B)·2,  C1(A)·C2(B), 

C2(A)·C0(B)·2,  C2(A)·C1(B),  C2(A)·C3(B)·1, 

C3(A)·C0(B),  C3(A)·C2(B)·1,  C3(A)·C3(B)·2 

Similarly, for the function that produce K as output (in 

the Kcolumn of the truth table), there are 6 instances that 

produce output e > 0. We create 6 AND gates as shown 

in the below and the connections are shown in Fig. 1. 

C1(A)·C3(B)·1,  C2(A)·C2(B)·1,  C2(A)·C3(B)·1, 

C3(A)·C1(B)·1,  C3(A)·C2(B)·1,  C3(A)·C3(B)·1 
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step process, implementation of any multi-valued 

function becomes feasible. 

Step 0. Truth Table: Creating a truth table to define the 

multi-valued functions.

As an example, we choose to design an adder that adds 

two 4-valued numbers A, B. We create atruth tableto 

define the required functions. 

Step 1. Ci(x) gates: Connecting each input x to n Ci(x) 

gates for 0 ≤ i ≤ n-1.



Step 3: OR gate: Connecting the outputs of all the 

AND gates to an OR gate, which produces the outputs of 

the required function.  

Finishing the example of designing an adder for the 

function that produce S as output (in the S column of the 

truth table), we connect the outputs of all the 9 AND 

gates (from Step 2) to an OR gate, as defined below: 

S = C0(A)·C1(B)·1 + C0(A)·C2(B)·2 + C0(A)·C3(B) + 

C1(A)·C0(B)·1 + C1(A)·C1(B)·2 + C1(A)·C2(B) + 

C2(A)·C0(B)·2 + C2(A)·C1(B) + C2(A)·C3(B)·1 + 

C3(A)·C0(B) +  C3(A)·C2(B)·1 +  C3(A)·C3(B)·2 

Similarly, for the function that produce K as output (in 

the K column of the truth table), we connect the outputs 

of all the 6 AND gates (from Step 2) to an OR gate, as 

defined below: 

K = C1(A)·C3(B)·1 + C2(A)·C2(B)·1 + C2(A)·C3(B)·1 + 

C3(A)·C1(B)·1 + C3(A)·C2(B)·1 + C3(A)·C3(B)·1 

The results all the connections are shown in Fig. 1, 

which is the four-valued circuit that implements the four-

valued addition of two four-valued numbers. 

V. DESIGNING MULTI-VALUED MEMORY 

Multi-valued memory is a necessary component for 

designing multi-valued systems. In this section, we 

present our design of a D-type fuzzy flip-flop or fuzzy 

memory cell [32]. Our design is based on an extension of 

the idea of binary D flip-flop. Excitation table for binary 

D flip flop is shown in Table VIII. The next state Q(t+1) 

of a D fuzzy flip-flop is characterized as a function of 

both the present state Q(t)and the input state D. Min term 

expression for Q(t+1) is  

 

Above equation is also referred to as the characteristic 

equation of the D Flip-flop. A mutually equivalent 

equation can be derived from Table 8 consisting of max 

terms  

   )()()1( tQDtQDtQ   

TABLE VIII.  EXCITATION TABLE FOR BINARY D FLIP-FLOP 

 
Above two equations can be transformed to fuzzy 

domain by replacing the binary operators by fuzzy 

operators. They can be redefined using min-max type 

operation and fuzzy negation as follows: 

    DtQDtQtQ  )()(1)1(  

    DtQDtQtQ  )()(1)1(  

In which the   represents min operation and   

represents max operation. These two equations, however, 

do not completely transform D flip-flop to the fuzzy 

domain. Hence, we proposed an equation that has the 

characteristics of both the equations and also exhibits an 

analogy with the binary counterpart, as follows: 

      DtQtQDDtQ  )(1)()1(  

This equation has led to realization of the circuit of D-

type fuzzy flip-flop. The design of the new D fuzzy flip-

flop is shown in Fig. 2, in which the gates are fuzzy logic 

AND, OR, and NOT gates. This D-type fuzzy flip-flop 

can be used as a fuzzy memory cell. 

 

Figure 2.  A new multi-valued memory cell 

Working of the D-type fuzzy flip-flop (shown in Fig. 2) 

can be understood by initially considering binary values 

0 or 1. If the value of the input D is set at either 0 or 1 

regardless the initial value of Q at time t, Q will be set to 

the value of D. Any value ranging from 0 to 1 also 

produce the required results. To get an initial idea of the 

behavior of the D fuzzy flip-flop, we simulated our 

design using MATLAB and Simulink [33]. Fig. 3 shows 

the setup of the simulation and the results are shown in 

Fig. 4. The results show that the D fuzzy flip-flop is 

simply storing whatever value provided on the input D. It 

is simply a fuzzy memory cell. 

 

Figure 3.  Simulation setup of multi-valued memory cell using 
simulink 

 
(a) Input D 
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)()()1( tQDtDQtQ 



 
(b) Output Q 

Figure 4.  Simulated result of multi-valued memory cell 

We extended the fuzzy memory cell to clocked D 

fuzzy flip-flop. Fig. 5 shows our design of the fuzzy flip-

flop. This clocked D fuzzy flip-flop can be used in the 

design of sequential fuzzy circuits. 

 

Figure 5.  Clocked D-type fuzzy flip-flop 

VI. CONCLUSION AND FUTURE RESEARCH 

Now is the time to depart from the two-valued logic to 

venture into multi-valued logic and even into infinite-

valued or Fuzzy logic. To make multi-valued 

computation possible, this paper provides the necessary 

tools for designing multi-valued systems entirely within 

the domain of multi-valued logic. We describe a simple 

four-step process for feasible design of multi-valued 

circuits to implement any multi-valued function. 

We also provide designs of memory cells that can 

store any multi-valued variable. The memory cell is the 

first D-type fuzzy flip-flop that can also be used as a 

fuzzy memory cell. We also present the circuit of a 

clocked D-type fuzzy flip-flop that can be used in the 

design of sequential fuzzy circuits. The fuzzy flip-flop is 

designed entire in the fuzzy domain using fuzzy AND 

gate, fuzzy OR gate, and fuzzy NOT gate. Thus, the 

realization of the flip-flop depends on the realization of 

the fuzzy logic gates. 

The implementation of multi-valued the logic gates, 

including the AND, OR, NOT, and Disjoin (Ci(x)) gates, 

in integrated circuits can be found in [1], [32], [34]. Thus, 

it would be feasible to implement the designed multi-

valued circuits in integrated circuits. 

Using the simple four-step process to design multi-

valued circuits do not necessary provide the most 

simplified circuits. In most case, the circuits can further 

be simplified, which can be done by algebraic 

manipulation based on the postulates for disjoint system 

of Post algebras provided in Section III. 

The next stage for future research will be to use the 

multi-valued circuit design methodology and memory 

cells to design large-scalecircuits for fully exploiting 

multi-valued logics and fuzzy paradigms in hardware. 
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