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Abstract—In this paper, Cerebellar Model Articulation 

Controller (CMAC) is used in conjunction with feedback 

control law to control a second order unstable plant. The 

memory of CMAC is updated according to the feedback 

error which makes the learning rate of CMAC sensitive to 

feedback error and hence responsible for the convergence of 

error. The paper starts with the comparison of unit step 

response of second order plant for different learning rates 

which show that the proposed variation in CMAC is 

sensitive to learning rates. Performance of the response is 

measured in terms in terms of key characteristics like rise 

time, peak overshoot, settling time and integral square error. 

Then discontinuous and continuous variable learning rate 

schemes are proposed to ameliorate the response of the 

plant in terms of peak overshoot, settling time and integral 

square error which is well supported by the simulation 

results done in MATLAB Simulink. 
 

Index Terms—Cerebellar model articulation controller, 

discontinuous variable learning rate CMAC, continuous 

variable learning rate CMAC 

 

I. INTRODUCTION 

The CMAC known as Cerebellar Model 

Articulation/Arithmetic Controller was proposed by J. 

Albus in 1975 [1], [2]. CMAC performs a multivariable 

function approximation in a generalized look-up table 

form. Due to its high learning speed and local 

generalization it is used in variety of applications [3]-[7]. 

In the memory update rule, learning rate is one of the key 

parameter of CMAC which is responsible for the rate of 

convergence of error. The effect of learning rate on the 

response of the controlled plant is illustrated with the 

help of second order unstable plant. The control law is 

derived using feedback control law in conjunction with 

CMAC. It is found that CMAC is sensitive to learning 

rates as learning rate decides the speed with which the 

response converges to zero error. It is evident that 

increase in learning rate is accompanied by the rapid 

convergence to zero error, but increasing learning rate in 

a quest to reach the zero error tends to make the system 

oscillatory. So learning rate must be chosen wisely so that 

response will be faster as well as there are no oscillations 

in the steady state. 

The response of the system can be improved by 

changing the control law which usually demands high 
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control effort. In order to improve the response of the 

system without changing the control effort appreciably 

there must be some modifications in the CMAC 

algorithm. Intuitively learning rates must be high when 

error is large and must be small when error is small. But 

in basic CMAC learning rate is fixed. Thus two variable 

learning rate schemes are suggested so as to improve the 

response of the system without changing the control 

effort appreciably. The simulation studies shows that the 

variable learning rate schemes are better than basic 

CMAC in terms of peak overshoot, settling time and 

Integral square error. 

 

Figure 1.  Cerebellar model articulation controller 

II.   CEREBELLAR MODEL ARTICULATION 

CONTROLLER 

CMAC is a learning structure which emulates the 

human cerebellum. It’s an associative neural network [8]-

[10] in which a small subset of the network influences 

any instantaneous output and that subset is determined by 

the input to the network as shown in Fig. 1. The region of 

operation of inputs is quantized say m inputs i.e. the 

number of elements in a particular input is m. This 

quantization determines the resolution of the network [11] 

and the shift positions of the overlapping regions. If n 

inputs are presented to the network, then total number of 

elements in input space is m
n
 which is quite large. To 

reduce this memory, inputs presented are converted into 

hyper cubes or hyper rectangles. A particular input vector 

is the sum of L nearby inputs i.e. a particular input is the 

overlapping of L nearby inputs. The number L is called 

the number of layer of CMAC which is referred to as the 

generalization width of CMAC. Thus m
n
 number of 

memory is converted into A memory units such that 

A<<m
n
. The outline of CMAC algorithm is given below: 
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(i) Number of inputs=n 

(ii) Number of elements for a particular input=m, 

which is also the number of quantized state for input. 

(iii) Total memory=m
n
 

(iv) Number of layers of CMAC=L 

(v) Number of hypercubes in i
th

 layer=ki, where i=1, 2, 

3…..L 

(vi) Total number of hypercube ∑  
 

, which is the 

memory of CMAC. 

When an input is encountered, L hypercubes are 

activated and output of the network is simply the sum of 

the contents of that hypercube. That is if CMAC is an 

approximator its basis function can be defined as [11] 

   {
                          
                                      

}           (1) 

The memory content update rule is given by least 

square mean as [1] 

 ( )   (   )                           (2) 

where lr is the learning rate of CMAC and e is the 

network error. 

In this paper, there is a slight modification in the 

weight update law by taking the error of the feedback 

system instead of network error and hence called 

feedback error based CMAC. The main focus of the 

paper is to study and observe the behavior of learning rate 

of CMAC and then suggest two variable learning rate 

schemes which improve the response of the system. The 

output value for an input point can be considered as a 

weighted sum of selected basis functions. The order of 

the plant determines the number of inputs of CMAC. 

A. Effect of Learning Rate on CMAC 

Increase in learning rate implies that the response will 

try to reach the zero error level as soon as possible. Thus 

the consequence of increasing learning rate is the faster 

rise time which can be seen from the simulation results 

and from the table. Though there must be some 

constraints on the learning rate of CMAC as higher 

learning rates may lead to the instability. As far as the 

stability concerned, higher learning rate means large 

value of overshoot but faster settling time while lower 

learning rates have sluggish response and have large 

settling time. Thus while choosing the values of learning 

rates there is a tradeoff between overshoot and settling 

time. Hence learning rate is one of the parameters of 

CMAC which needed to be chosen wisely. The variation 

of peak overshoot with learning rate is shown in Fig. 2. 

Though another way to get the desired response is to 

change the error dynamics of feedback control law but 

usually it leads to the larger control effort which is not 

desirable in control system applications. In order to 

improve the response of the system CMAC algorithms 

needs to be altered such that there is no appreciable 

change in feedback control law. Another way to improve 

the response of the system is to change the learning rate 

of the system according to error. That is, when error is 

high learning rate is made high so that it move towards 

the zero error quickly when error is low learning rate is 

made lower so that the response doesn’t go beyond the 

zero error level due to higher learning rate. Thus to apply 

this logic response of the system is divided into four 

regions. In order to understand why these four regions are 

used one must understand the implications of using 

variable learning rate scheme. Initially the error is very 

high due to which larger learning rate is recommended. 

Due to higher learning rate, response will reach the zero 

error level quickly but it will not stop at this level and it 

will go further. When it goes beyond the prescribed level 

of error, learning rate is increased further due to which 

there is a dampening in the speed of response due to 

which the overshoot as compared to fixed learning rate 

scheme will decrease. As the error reaches within the 

prescribed range, learning rate can be made lower as 

there is no need to learn more. Not only this, due to the 

curbing of response in upward direction due to the higher 

learning rate response tends to move in downward 

direction quickly, the decrease in learning rate in this 

region tends to slow down the response in downward 

direction. In spite of the lowering in learning rate in this 

region it may be possible that undershoot may cross the 

prescribed error range. Thus again to suppress 

undershoots, learning rate must be increased such that it 

will push the response towards zero error position. To 

reduce the overshoot further, one may keep the learning 

rate very low at the start of the response due to which rise 

time will increase but it’s harmless as compared to the 

peak overshoot. Thus response of the system is divided 

into four regions with different learning rate namely lr1, 

lr2, lr3 and lr4 respectively. 

 

Figure 2.  Division of unit step response region according to learning 
rates 

III.    DISCONTINUOUS VARIABLE LEARNING RATE 

CMAC 

In this variable learning rate scheme, the step response 

of a system is divided into four regions as shown in Fig. 2. 

A. Region 1 

In this region error is high so it’s logical to make the 

learning rate high. But it is seen that the higher learning 

rate makes the response reaching to the zero error level 

quickly but at the same time due to higher learning rate 

response becomes very fast and that may lead to the 

higher peak overshoots. So it’s advisable to keep the 

learning rate in this region to be low which obviously 

occurs at the cost of rising time. 
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B. Region 2 

This region is decided on the basis of undershoots 
which occurs due to curbing of peak overshoot. In real 
time applications undershoot are undesirable. Learning 
rate in this region can be made high and low depending 
upon the two cases. 

Case 1: If there are not any undershoots or 
undershoots not going beyond Region 3. Then the value 
of learning rate in this region must be made very low as it 
serves two purposes. First, at the start of the response 
lower value of learning rate slows the speed of response 
due to which peak overshoots in the region 4 will not be 
high. Second, as there are not undershoots after the peak 
overshoot, there is no chance that these undershoots are 
going to occur in future. 

Case 2: In case the peak overshoots are very high in 
the region4 and to suppress that learning rate is made 
very high, there is a chance that suppression may push 
the response in downwards direction to such extent that it 
may cross the prescribed error level. Thus to suppress 
that overshoot learning rate is made high but not higher 
than lr4 in this region. 

C. Region 3 

In this region error is small so learning rate must be 
kept small so as to avoid the harmful effects of higher 
learning rate. 

D. Region 4 

Since error is high in this region, learning rate must be 
kept high in comparison to other three regions. This will 
curb the overshoots. Though making it much higher tends 
to push the response in downwards direction which may 
lead to undershoots as discussed in Region 2 section. 

That is, learning rate 

   {

                       
                              

                                        
                      

}          (3) 

Thus, from the four regions it is evident that if first 
case of region 2 occurs then                 else 
for the other cas                . Note that the 
learning rate is varied sharply with respect to error i.e. the 
variation of learning rate with respect to error is made 
discontinuous. To vary the learning rate smoothly with 
respect to error continuous variable learning rate CMAC 
is proposed. 

IV.    CONTINUOUS VARIABLE LEARNING RATE 

CMAC 

This variable learning rate scheme uses the same logic 
as that scheme1. But rather learning rate is not varied 
sharply but smoothly with respect to error. 

Learning rate can be written as, 
For case 1: 
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For case 2: 
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V.   CONTROL SCHEME 

To demonstrate the behavior of learning rates 

simulations are done on unstable second order plant in 

which CMAC is used in conjunction with feedback 

control law to control the plant. Though CMAC has the 

capability to learn nonlinear functions quickly, linear 

plant is discussed here for simplicity. The plant can be 

written in state space form as 

{
 ̇                                    
 ̇                   

}                  (6) 

It can also be written as 

{
 ̇                                    
 ̇   (     )             

}                  (7) 

 

Figure 3.  Simulink diagram of CMAC 

Control law for the state space equation given by (8) 

can be written as, 

  [   (     )        ̂]               (8) 

where    is the input signal,  ̂ being the function to be 

estimated online, k1 and k2 is such that the polynomial 

         is Hurwitz. The Simulink diagram to 

implement the CMAC is shown in Fig. 3. 

VI.    SIMULATION AND RESULTS 

For simulation purpose, an unstable plant with transfer 

function as given by (6) is used 

 ( )  
  

         
                         (9) 

This plant can be written in state space form 

{
 ̇                                    
 ̇               

}                  (10) 

Since the plant is of second order, two inputs CMAC is 

used. Parameters of two input CMAC 

Quantization=20 

Generalization=6 

Number of hypercube=105 
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Figure 4.  Response of the system for different learning rates 

TABLE I.  EFFECT OF DIFFERENT LEARNING RATES WHEN COVERING 

LARGE RANGE OF LEARNING RATE 

Learning 

rate 

Rise 

time(s) 

Peak 
overshoot 

(%) 

Settling 

time(s) 

Integral 
Square 

Error 

0.5 0.4735 14.98 5.7992 0.1603 

5 0.3073 14.89 1.0162 0.1146 

10 0.2592 23.65 1.0132 0.1127 

20 0.2216 35.09 0.9772 0.1152 

25 0.2119 39.34 3.1549 0.1225 

30 0.2010 42.15 3.0742 0.1276 

50 0.1783 48.85 4.0260 0.1488 

TABLE II.  EFFECT OF DIFFERENT LEARNING RATES WITH LOWER 

LEARNING RATES 

Learning 

rate 

Rise 

time(s) 

Peak 

overshoot 
(%) 

Settling 

time(s) 

Integral 

Square 
Error 

0.5 0.4735 14.98 5.7992 0.1603 

1.0 0.4432 14.83 3.1054 0.1414 

1.5 0.4182 14.73 2.2112 0.1338 

2.0 0.3948 14.61 1.7882 0.1287 

2.5 0.3753 14.53 1.5423 0.1250 

 

Figure 5.  Variation of peak overshoots with learning rates 

The range of inputs x1 and x2 is taken to be -5 to 5 units. 

From the Table I and Table II and simulation results of 

Fig. 4, it is concluded that peak overshoot increases with 

increase in learning rate. Though increasing in learning 

rate beyond 10 makes the response oscillatory due to 

which integral square error increases slightly. From the 

response of the system it is easy to see that for higher 

learning rate error though converges to zero value but it 

will oscillate around zero error level. If learning rate is 

taken to be low it is found that peak overshoot decreases 

with increase in learning rate. From Fig. 5, it has been 

found that peak overshoot remains nearly the same at 

about 15% for learning rate from 0 to 5. After that range 

it will increase monotonically with the increase in 

learning rates. So the response for the learning rates from 

0.5 to 2.5 is chosen. 

To improve the response two variable learning 

schemes are used. For the variable learning schemes to be 

implemented two cases which have been discussed in 

Region 2 must be taken into account. Case1 is applicable 

if there are no undershoots or the value of undershoots 

are very less. It is evident from the response that there are 

no undershoots for lower learning rates. 

 
Figure 6.  Comparison of unit step responses of CMAC, DVL CMAC 

and CVL CMAC 

TABLE III.  RESPONSE FOR DISCONTINUOUS VARIABLE LEARNING 

SCHEME 

                
Rise 
time 

Peak 
overshoot 

Settling 
time 

Integral 

square 

error 

0.1 0.1 0.5 2.0 0.5009 11.57 1.9265 0.1329 

0.1 0.1 0.5 3.0 0.5009 10.77 1.5706 0.1300 

0.1 0.1 0.5 4.0 0.5009 10.19 1.3921 0.1284 

0.1 0.1 0.5 5.0 0.5009 9.71 1.2817 0.1275 

0.1 0.1 0.5 6.0 0.5009 9.37 1.2050 0.1269 

0.1 0.1 0.5 7.0 0.5009 9.06 1.1468 0.1265 

0.1 1.0 0.5 1.5 0.5025 12.68 2.3082 0.1369 

0.1 1.5 1.0 2.0 0.4939 12.40 1.9232 0.1342 

0.1 1.0 0.5 2.0 0.4963 12.11 1.9239 0.1339 

0.1 1.5 0.5 2.0 0.4939 12.40 1.9233 0.1343 

0.1 1.0 0.5 2.5 0.4963 11.66 1.7066 0.1318 

0.1 1.5 0.5 2.5 0.4939 11.94 1.7050 0.1322 

0.1 0.1 0.5 1.5 0.5010 12.12 2.3046 0.1359 

0.1 0.1 0.5 2.0 0.5010 11.57 1.9272 0.1329 

0.1 0.1 0.5 2.5 0.5010 11.14 1.7113 0.1312 
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TABLE IV.  RESPONSE FOR CONTINUOUS VARIABLE LEARNING 

SCHEME 

                
Rise 

time 

Peak 

overshoot 

Settling 

time 

Integral 

square 
error 

0.1 0.1 0.5 2.0 0.5000 11.14 1.6107 0.1304 

0.1 0.1 0.5 3.0 0.5000 10.45 1.3620 0.1284 

0.1 0.1 0.5 4.0 0.5000 9.95 1.2332 0.1274 

0.1 0.1 0.5 5.0 0.5000 9.58 1.1515 0.1267 

0.1 0.1 0.5 6.0 0.5000 9.28 1.0921 0.1263 

0.1 0.1 0.5 7.0 0.5000 9.03 1.0486 0.1260 

0.1 1.0 0.5 1.5 0.4786 13.20 2.1663 0.1360 

0.1 1.5 1.0 2.0 0.4728 13.10 1.8029 0.1336 

0.1 0.1 0.5 2.5 0.4998 11.23 1.6512 0.1309 

 

Thus Case1 is applicable for lower learning rates. For 

simulation, 

                         . 

From Fig. 6 Peak overshoot gets reduced from 14.88% 

to 9.71% and ISE=0.1275. Settling time=1.2817 sec. 

Table III and Table IV show the response for variable 

learning rate scheme. 

Case 2 is applicable for higher learning rates. 

For Simulation, 

                              

If Case 2 arises, from Fig. 7 the continuous and 

discontinuous variable learning rate scheme shows 

significant improvement over single fixed learning rate of 

20 by decreasing the peak overshoot of 34.7% to 10.53% 

and 11.93% respectively. Table V and Table VI show the 

different learning rates of the region for CVL CMAC and 

DVL CMAC. CVL CMAC is better than DVL CMAC in 

rise time, settling time and integral square error while 

peak overshoots of DVL CMAC is marginally better than 

that of CVL CMAC. From Fig. 3 the minimum value of 

overshoot for different learning rate is 14.33, the CVL 

and DVL scheme have been able to suppress the 

overshoots below 14.33 which implies both the CVL 

CMAC and DVL CMAC are better than fixed learning 

rate feedback error based CMAC in suppressing 

overshoots. 

TABLE V.  RESPONSE FOR DISCONTINUOUS VARIABLE LEARNING 

RATE SCHEME 

                
Rise 

time 

Peak 
overshoot 

/undershoots 

Settling 

time 

Integral 
square 

error 

0.1 10 0.5 20 0.4652 10.53/4.69 1.2969 0.1261 

0.1 10 0.5 25 0.4652 9.94/5.48 1.2864 0.1259 

0.1 10 0.5 30 0.4652 9.49/6.19 1.2760 0.1259 

0.1 10 5.0 20 0.4652 10.53/4.69 1.2923 0.1261 

0.1 10 5.0 25 0.4652 9.94/5.45 1.2853 0.1259 

0.1 10 5.0 30 0.4652 9.50/6.17 1.2747 0.1259 

 

TABLE VI.  RESPONSE FOR CONTINUOUS VARIABLE LEARNING RATE 

                
Rise 

time 

Peak 

overshoot 
/undershoots 

Settling 

time 

Integral 

square 
error 

0.1 10 0.5 20 0.4046 11.93/6.98 1.0716 0.1242 

0.1 10 0.5 25 0.4046 11.65/7.95 1.0308 0.1241 

0.1 10 0.5 30 0.4046 11.45/8.77 1.0142 0.1242 

0.1 10 5.0 20 0.4032 11.93/6.98 1.0718 0.1242 

0.1 10 5.0 25 0.4032 11.64/7.96 1.0310 0.1241 

0.1 10 5.0 30 0.4032 11.44/8.73 1.0139 0.1242 

 

Figure 7.  Comparison of unit responses of CMAC, DVL CMAC and 
CVL CMAC 

VII.    CONCLUSION 

In a feedback error based CMAC, the response of the 

system is sensitive to learning rates as shown in Fig. 3. 

Lower learning rate gives sluggish response with low rise 

time and large integral square error while higher learning 

rate is accompanied by the fast response, low settling 

time and low integral square error though it may lead to 

the small amplitude oscillation in steady state. Fast 

response lead to the higher value of overshoots which is 

undesirable. The variation of peak overshoot with 

learning rate is shown in Fig. 3. To avoid the undesirable 

characteristics of fixed learning rate, learning rate is 

made to vary according to error. Fig. 1 shows the 

schematic of division of step response according to 

learning rate. Continuous variable learning rate (CVL) 

CMAC and Discontinuous variable learning (DVL) 

CMAC are the two variable learning rate schemes applied 

to curb the overshoots without affecting the settling time 

and integral square error. Two types of response are 

possible while applying the mentioned learning schemes. 

In the first type, the learning rate in the negative error 

region is not very high which leads to either no 

overshoots or small value of overshoot. Table III and 

Table IV show the response for various values of learning 

rate for this type of response. While in the second type, 

the learning rate in the negative error region is very high 

which leads to undershoots. Table V and Table VI show 

the response for various values of learning rate for this 

type of response. In both the type of response, CVL 

CMAC and DVL CMAC shows better performance than 

fixed learning rate CMAC in terms of peak overshoot. 

Fig. 4 and Fig. 5 shows that CVL CMAC and DVL 
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CMAC have better response than fixed learning rate 

CMAC. Rate of convergence of CVL CMAC is slightly 

better than that of DVL CMAC while DVL CMAC 

handles the overshoots better than CVL CMAC. 
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