
On Extending the Sensing of Privacy-Aware

Online Social Networks

Asma Wasfi
College of Engineering, UAE University

Qurban Memon
EE Department, UAE University, Al-Ain, 15551, UAE

Email: qurban_memon@uaeu.ac.ae

Abstract—Wireless sensor networks (WSNs) are mature

enough for widespread adoption. WSNs could be made more

attractive to end users by integrating them with online social

networks (OSNs). This includes developing novel

applications and interaction paradigms between WSNs and

OSNs. In this paper, an effort is made by extending the

prevalent sensing abilities of online social networks by

injecting more sensing features and then processing and

clustering some of this information for fruitful use using a

locally developed application. Data privacy is enforced using

data levels and user roles. Firstly, a conceptual framework is

presented followed by local development of its components

and services. The application is developed in a typical

environment such as Android.

Index Terms—social networks, privacy, role based access

I. INTRODUCTION

Nowadays sensors and social networks can fruitfully

interface, from sensors providing contextual information

in context-aware and personalized social applications, to

using social networks as “storage infrastructures” for

sensor information. The integration of sensor networks

with social networks leads to applications that can sense

the context of a user in better ways and thus provide more

personalized and detailed solutions. Social networks have

gained popularity recently with the advent of sites such as

MySpace, Friendster, Facebook, etc. These networks are a

source of data as users populate their sites with personal

information. To better understand how online social

networks can be integrated with physical world, there is a

need to understand services provided by current OSN’s,

which are (i) identity and authorization services, (ii)

Application Programming Interfaces (APIs) to access and

manipulate the social network graph and publish and

receive updates and (iii) container facilities for hosting

third party applications [1].

Some examples of integration of social and sensor

networks may be exemplified as, for example the Google

Latitude application, which shares the collected mobile

position data of the user. As a typical use, the proximity

alerts may be triggered when two linked users are within

Manuscript received April 15, 2014; revised July 31, 2014.

geographical proximity of one another. In another

application, the City Sense application collects sensor

data extracted from fixed sensors, GPS-enabled cell

phones and cabs in order to determine where the people

are, and then carries this information to clients who

subscribe to this information. A number of real-time

automotive tracking applications such as ‘Automotive

Tracking Application’ determine the important points of

congestion in the city by pooling GPS data from the

vehicles in the city. Animal Tracking uses tracking data

collected with the use of radio-frequency identifiers [2].

The CenceMe application injects sensing presence into

popular social networking applications such as Facebook,

MySpace, and IM (Skype, Pidgin) allowing for new

levels of “connection” and implicit communication

between friends in social networks [3]. The Green GPS is

a participatory sensing navigation service that maps fuel

consumption on city streets, to allow drivers to find the

most fuel-efficient routes for their vehicles between

arbitrary end-points [4]. The Microsoft Sensor Map

allows for a general framework where users can choose to

publish any kind of sensor data. The sensor data

published by a user can be their audio or video feed,

location information or text which is typed on a keyboard.

The goal of the Microsoft SensorMap is to store and

index the data in a way that is efficiently searchable. The

SensorMap application enables users to index and cache

data. The indexing and caching allows users to issue

spatio-temporal queries on the shared data [2].

The innovations in World Wide Web [5] and the recent

trends in data protection [6], [7] have increased attraction

for use of online social networks. However, the related

advancements in technology and tools are also

complimented by corresponding privacy concerns. The

important thing to note is the lack of awareness for

potential risks involved when data is being shared online

[8]. Specifically, the external entities can mine this data

and use it for different purposes like spamming [9],

discovering interaction pattern in the enterprise to offer

and develop innovative services, identification of the

important person in the network, detection of hidden

clusters, identifying user sentiments for proactive

strategies etc. [10].

International Journal of Electronics and Electrical Engineering Vol. 3, No. 4, August 2015

©2015 Engineering and Technology Publishing 323
doi: 10.12720/ijeee.3.4.323-330

mailto:qurban_memon@uaeu.ac.ae

The purpose of this research is to extend the integration

of WSNs and OSNs, to improve social networking in area

of healthcare to help people find motivation to exercise,

to doctors to see specific information, to accumulate

fitness parameters, to track and locate friends and family

members to share certain parameters.

The paper is structured as follows. In the next section,

a framework is developed that describes what is needed to

build such an application, and which social parameters

need to be linked, and how the platform addresses privacy.

The section three discusses the framework

implementation. The development details are discussed in

section four along with results. The comparative analysis

is carried out in section five, followed by conclusions in

section six.

II. CONCEPTUAL FRAMEWORK

The design and implementation of ‘AppName’ is
described as a sensing application that enables members
of a typical social network platform to share their location

information with their friends in a private manner. The

goals of the development are: (i) to foster and extend the
integration of WSNs and OSNs; (ii) to improve social
networking; (iii) to create healthcare fun and help people
find motivation to exercise; and (iv) to track and locate
friends and family members and generate clusters based

on a criterion. The application is expected to allow new
levels of “connection” and implicit communication
between contact groups in social networks. The
application uses various sensors to acquire relevant data
and display it on user device. The user can check-in to
one of the displayed places, and this, in turn, is named as

a single visit to a location. Thus, the user can get his/her
friends location based on their last check-in. The user
should also be able to see if any of his/her friends are
checked in nearby. For this, the displayed nearby friends
need to be clustered to nearby colleagues, family and so
on. In addition the application should enable the user to

calculate the distance he/she walked, the duration spent
during the walk and the walking related burned calories.
Social constraints such as privacy area are also addressed
in this application. Based on this, a framework is
displayed as shown in Fig. 1.

Figure 1. AppName conceptual framework

Based on the framework, the services that meet these
goals are detailed in this section. These are stated as
follows:

A. Application Platform

There are several popular OSN platforms. The

Facebook is the most popular OSN platform today. This

application is developed for such a platform and is

compatible with Android devices. For development, the

Facebook supports different APIs for developers: (i) The

Graph API, which is a simple HTTP-based API that

gives access to the Facebook social graph, uniformly

representing objects in the graph and the connections

between them. Most other APIs are based on the Graph

API; (ii) The Open Graph API allows applications to tell

stories through a structured, strongly typed API; (iii) The

Facebook offers a number of dialogs for Facebook Login,

posting to a person's timeline or sending requests; (iv)

The Facebook Query Language (FQL) enables the

developer to use a SQL-style interface to query the data

exposed by the Graph API. It provides some advanced

features not available in the Graph API such as using the

results of one query in another; and (v) The Facebook

Public Feed API lets the developer read the stream of

public comments as they are posted to Facebook.

International Journal of Electronics and Electrical Engineering Vol. 3, No. 4, August 2015

©2015 Engineering and Technology Publishing 324

B. Application Sensors

The application uses the built-in GPS of the user

mobile device to get current location coordinates. It also

uses the temperature and humidity sensor to check the

weather temperature.

C. Application Services

The services, which can be used using this platform,

are:

Show nearby places: This application enables the user

to use the built-in GPS of the mobile device to get the

current location. It displays a list of nearby places as well.

Public location badge: The user can post location

directly on Facebook to increase visibility of information

to other users.

Show nearby contacts: The user gets his contact

location based on last Check-in. The user can see if any

of his/her friends are checked in nearby. The application

displays a list of nearby friends, place and the time they

checked in.

Cluster nearby contacts: Clustering is important in

analysis and exploration of data. This application clusters

nearby friends into groups based on colleagues, family

and so on.

Tracking distance moved, calories burned and active

time: This application tracks distance moved, calories

burned and shows active time for the user. The

application can also be used for running, cycling,

walking and all other distance-based outdoor sports.

Once data is shown on network, the user can seek extra

encouragement from friends and family to workout. The

clinical staff from a healthcare center can also monitor

shared clinical data.

Get weather temperature: This application enables the

user to use the built-in sensors of a mobile device to

check the weather temperature and share with friends.

Share pictures: The application enables image of

user’s specific injured or monitored body part, once on

line, to be seen and examined by a doctor.

D. Application Security and Privacy

At this level, the main focus is how user can control

the detail and the accuracy of what other users will be

able to access and see. In order to maintain, privacy, the

user can turn off this whole or components of this

application using the settings option. Another option is to

use different levels in data and the user roles based on

connectivity. A role represents a group initiated by the

user. The idea is that the users in the same cluster with

same relationship with the user can get same levels of

information. Thus the user assigns relationship to each

connection. More relationship provides access to more

information. This is depicted in Fig. 2.

It is clear from Fig. 2 that each contact has some level

of access to the user data. For example, the contacts 1, 3,

and 4 (i.e., friend, colleague, office staff) may only

access name of the user, while contact 2 (a healthcare

unit staff) may also access address and medical records

though all contacts may be part of same social network.

Figure 2. User-Data model

Figure 3. Software architecture of appname

III. FRAMEWORK IMPLEMENTATION

Based on the framework, the information and process

flow inside ‘AppName’ can be easily visualized, based

on which software architecture of ‘AppName’ is shown

in Fig. 3. For the purpose of implementation, the various

stages in information and process flow are discussed

below.

A. Sensing

Most Android-powered devices have built-in sensors

that measure motion, orientation, and various

environmental conditions. These sensors prove raw data

with precision and accuracy. The platform supports three

broad categories of sensors: (i) position sensors to

measure the physical position of a device. This category

includes orientation sensors and magnetometers; (ii)

environmental sensors to measure various environmental

parameters, such as ambient air temperature and pressure,

illumination, and humidity. This category includes

barometers, photometers, and thermometers; and (iii)

motion sensors to measure acceleration and rotational

forces along three axes. This category includes

accelerometers, gravity sensors, gyroscopes, and

rotational vector sensors. In this application, position and

environmental sensors are used.

B. Data Acquisition

Data acquisition is the process of gathering

information in an automated fashion from analog and

digital measurement sources such as sensors. Apart from

position and environmental sensors to get position (i.e.,

latitude and longitude information) and weather

information respectively, AppName uses Facebook APIs

such as Graph API and Facebook Query Language to

extract the user education history, user work history,

International Journal of Electronics and Electrical Engineering Vol. 3, No. 4, August 2015

©2015 Engineering and Technology Publishing 325

friend’s last check-in coordinates, friends education

history, friends work history and the nearby places.

C. Data Processing

AppName analyses and processes the extracted data to

produce meaningful information. After getting the user

location coordinates and his/her friends’ location

coordinates, AppName measures the distance between

the user and each one of his friends to produce list of

nearby friends. AppName compares the user education-

history and other details with friends’ education-history

to cluster the nearby friends into groups such as

colleagues, family and so on. Additionally, AppName

uses the acquired location coordinates taken frequently to

measure the distance walked, the related duration and the

calories burned.

D. Data Sharing

AppName enables the user to share location, the

distance walked, burned calories, the weather

temperature and pictures. The Graph API updating is

done simply with an HTTP POST request to relevant

endpoint with the updated parameters. To publish and

share new data AppName uses POSTs HTTP requests to

appropriate URLs.

E. Presentation

After processing the data, AppName displays a list of

nearby places. The user will be able to check in to any of

these places by clicking on one of the places. It also has

nearby friends icon by pressing on this icon, the user will

get a list of his/her nearby friends based on their last

check-in. AppName organizes nearby friends into groups

of colleagues, work friends, family and others. Moreover,

it displays the distance the user walked, total calories

burned and the weather temperature.

IV. DEVELOPMENT RESULTS

In this section, the main focus is how all the functions,

components and services mentioned in section 3 are

implemented. Each of these is discussed below.

Login: This has been implemented in an easy way for

people to log in to the application such as AppName.

AppName uses iOS, Android, JavaScript and Facebook

SDKs to speed up the process and build login systems

quickly. For secure authorization Facebook uses the

OAuth2.0 open protocol for confirming a person’s

identity and giving them control over right of access to

their information.

Permissions: The permissions enable developers to

request access to information about someone using their

application. AppName asks for the following permissions:

offline access, publish stream, publish check-ins, photo

upload, user status, user education history, user work

history, friends’ status, friends’ education history and

friends’ work history. To gain access, AppName requests

the permissions transparently through the Login dialog.

To maintain information security, almost all API calls at

Facebook need to have an access token passed in the

parameters of the request.

Show nearby places: The following steps outline how

to get user’s current location, display a list of nearby

places and check in to one of these places with the

Facebook SDK for Android.

1) Set up the Place Picker Item: This step includes

defining a Base List Element class to represent an

item in the list. This class contains member

variables that define the user interface (UI) as well

as methods that are sub-classed to implement the

behavior around click events, storing and restoring

state info, as well as notifying observers about

data changes.

2) Show the Places Picker: The Facebook SDK

provides a Place Picker Fragment class that

displays a list of nearby places. This fragment is

hosted in the PickerActivity class. This activity

launches when the user clicks on a place in the list.

The Place Picker Fragment is used if the incoming

intent data matches a pre-defined place picker Uri.

Before loading the data, the Place Picker

Fragment is configured to specify search criteria

like radius, query and maximum results to return.

3) Display the Selected Place: In this step, the place

will be displayed when the place picker activity is

dismissed.

Public location badge: The following steps outline

how to publish a story to share the user location with

friends. A request will be published by using

Request(Session session, String graphPath, Bundle

parameters, HttpMethod httpMethod). Graph Object and

Open Graph Action interfaces are used to set up a Graph

object representation of the POST parameters. Facebook

SDK is used to publish the user location by performing

the following steps:

1) Construct a new Request for currently active

session that is an HTTP POST to the me/checkins

Graph API path.

2) Set a Graph Object for the Request instance. The

Graph Object represents location parameters, like

the selected place ID, message and location

coordinates.

3) For best practices, the user is asked for

publish_actions write permission in context, when

the app is about to publish the user location.

The code shown below publishes the user location to

his/her timeline and on the user friends’ news feeds.

publicvoid onClick(DialogInterface dialog, int which) {

Bundle params = new Bundle();

params.putString(“place”, placeID);

params.putString(“message”, message);

params.putString(“coordinates”, location.toString());

Utility.mAsyncRunner.request(“me/checkins”, params,

“POST”, new placesCheckInListener(), null); }

Show nearby contacts: To show nearby friends,

Facebook Query Language (FQL) is used. FQL enables

to use a SQL-style interface to query the data exposed by

the Graph API. Below, the steps are described that show

nearby friends.

1) Issue a HTTP GET request to /fql?q=query

where query is a JSON-encoded dictionary of

International Journal of Electronics and Electrical Engineering Vol. 3, No. 4, August 2015

©2015 Engineering and Technology Publishing 326

https://developers.facebook.com/docs/ios/login/
https://developers.facebook.com/docs/android/login-with-facebook

queries. The following code uses FQL to get the

friends details and location according to their last

check-in:

Bundle params = new Bundle();

params.putString(“method”, “fql.query”);

params.putString(“query”, “SELECT

author_uid,timestamp,coords,checkin_id FROM checkin

WHERE author_uid IN (SELECT uid2 FROM friend

WHERE uid1 = me()) “);

String response = Utility.mFacebook.request(params);

response = “{\”data\”:” + response + “}”;

2) Store the friends’ details and locations from

JSONObject into the following arrays latitude,

longitude, author_uid_array, timestamp and

checkin_id. After that, the distance between the

user and each one of his/her friends is calculated

and stored in distances array.

The following code uses the response for the FQL

query from the previous step and extracts the friends’

details and locations from the response, and then it stores

them in arrays. After that the distance is calculated and

stored in distances array.

JSONObject json = Util.parseJson(response);

JSONArray data = json.getJSONArray(“data”);

JSONObject coords;

Long author_uid=(long)0;

for (int i = 0, size = data.length(); i < size; i++){

JSONObject friend = data.getJSONObject(i);

if(author_uid!=friend.getLong(“author_uid”))

{

coords =

data.getJSONObject(i).getJSONObject(“coords”);

latitude[counter] = coords.getDouble(“latitude”);

longitude[counter] = coords.getDouble(“longitude”);

author_uid = friend.getLong(“author_uid”);

author_uid_array[counter]=friend.getLong(“author_uid”);

timestamp[counter] = friend.getString(“timestamp”);

checkin_id[counter]=friend.getLong(“checkin_id”);

loc. distanceBetween (loc.getLatitude(),

loc.getLongitude(), latitude[counter], longitude[counter],

results);

distances[counter]=results[0];

counter++;}}

3) Find out nearby friends by comparing distance

between the user and each one of his/her friends

with a predefined distance, then store nearby

friends’ name in an array.

The following code uses the distances array from the

previous step to compare the distance between the user

and each one of his/her friends with a predefined

distance-threshold in order to determine nearby friends.

Additionally, the following code uses FQL to get nearby

friends academics history details to be used in clustering.

for (int i = 0, size = distances.length; i < size

&&distances[i]!=0 ; i++){

if(distances[i]<(float)11500)

{

neededIndex[counter3]=i;

Nearby_friend_id[counter3]= author_uid_array[i];

counter3++;

}}

for (int i = 0, size = counter3; i < size ; i++){

if(i!= size-1)

{

query+= “uid=“+Nearby_friend_id[i]+” or “;

}

else
{

query+= “uid=“+Nearby_friend_id[i];

}}

Bundle params2 = new Bundle();

params2.putString(“method”, “fql.query”);

params2.putString(“query”, “SELECT uid, name,

education FROM user WHERE “+query);

String response2 = Utility.mFacebook.request(params2);

response2 = “{\”data\”:” + response2 + “}”;

JSONObject json2 = Util.parseJson(response2);

data2 = json2.getJSONArray(“data”);

for (int i = 0, size2 = data2.length(); i <size2; i++){

JSONObject friend2 = data2.getJSONObject(i);

Nearby_friend_Name[i]= friend2.getString(“name”);}

4) Display nearby contact names, their exact

location and when they checked in. For example:

Dr. Noor Checked in Al-Ain Hospital at 2014-

02-10 T09:16

In the following code, when user presses nearby

friends’ button, a list of nearby friends is displayed with

their location and when they checked in.

Button mGetNearbyFriends = (Button)

findViewById(R.id.get_nearby_friends);

mGetNearbyFriends.setOnClickListener(new

View.OnClickListener() {

publicvoid onClick(View v) {

try{

TextView friends_Locations = (TextView)

findViewById(R.id.friends_Locations);

friends_Locations.setText(““);

String jsonUser=null;

for (int i = 0, size = counter3; i < size ; i++){

jsonUser=

Utility.mFacebook.request(““+checkin_id[neededIndex[i

]]);

obj = Util.parseJson(jsonUser);

 placeName[i]=obj.optJSONObject(“place”).getStrin

g(“name”);

created_time[i]=obj.getString(“created_time”);

friends_Locations.append(Nearby_friend_Name[i] +”

checked in “+placeName[i] +” at “+

created_time[i]+”\n”);} }

catch (MalformedURLException e) {

e.printStackTrace();}

catch (IOException e) {

e.printStackTrace();}

catch (FacebookError e) {

e.printStackTrace();}

catch (JSONException e) {

e.printStackTrace();}

}});

International Journal of Electronics and Electrical Engineering Vol. 3, No. 4, August 2015

©2015 Engineering and Technology Publishing 327

Cluster nearby contacts: The following steps show,

how clustering can be used to group nearby friends.

1) Issue a HTTP GET request, shown below, to

/fql?q=query to get user academics history:

2) Issue a HTTP GET request, shown below, to

/fql?q=query to get nearby colleagues after

placing the user education history in the FQL

query and display the nearby colleagues for the

user.

The code shown in Appendix (a) shows how to cluster

contacts.

Tracking distance moved, calories burned and active

time: The following steps show, how tracking distance

moved, calories burned and active time is calculated.

1) AppName tracks the user moved distance by

capturing user location coordinates periodically,

calculating the distance between each two

locations and summing the distances from the

time the user presses start button till the time the

user presses stop button.

The following code stores the user location

coordinates periodically till stop button is pressed.

publicvoid onLocationChanged(Location loc) {

dialog.dismiss();

if (loc != null) {

try {

location.put(“latitude”, new Double(loc.getLatitude()));

location.put(“longitude”, new

Double(loc.getLongitude()));

} catch (JSONException e) {

}

showToast(“Location acquired: “ +

String.valueOf(loc.getLatitude()) + “ “

+ String.valueOf(loc.getLongitude()));

lm.removeUpdates(this);

if(counter==0)

{

fetchPlaces();

latitude[counter]=loc.getLatitude();

longitude[counter]=loc.getLongitude();

}

elseif (counter==1)

{

latitude[counter]=loc.getLatitude();

longitude[counter]=loc.getLongitude();

}

else
{

latitude[counter]=loc.getLatitude();

longitude[counter]=loc.getLongitude();

loc.distanceBetween (latitude[counter-1],

longitude[counter-1],latitude[counter], longitude[counter],

results);

distances[counter]=results[0];

TotalDistance+=distances[counter];}}

AppName will request the user to enter his/her weight

in kilograms in order to calculate the walking burned

calories. AppName uses the below equation to calculate

the rate of calories burned per pound of body weight [11].

Rate per Pound (Cal/lb-min) = A+BV+CV
2
+KDV

3

where:

V=Walking Speed (mph) – Limited to a minimum of 1

mph and a maximum of 5 mph

A= 0.0195

B= - 0.00436

C= 0.00245

D= [0.000801(W/154)
0.425

]/W

W=Weight (lbs)

K= 0 or 1 (0=Treadmill; 1=Outdoors)

The code, shown below, uses the above equation to
calculate the walking burned calories. When the user
presses stop button, AppName displays the distance
walked, the duration spent during the walk and the
walking burned calories.

privatevoid getDistanceAndCalories() {

TextView DistanceMoved = (TextView)

findViewById(R.id.distance_moved);

TextView Activetime = (TextView)

findViewById(R.id.active_time);

TextView WalkingBurnedCalories = (TextView)

findViewById(R.id.burned_calories);

EditText Weight = (EditText)

findViewById(R.id.weight);

DistanceMoved.setText(“Total Distance you walked : “+

TotalDistance);

activeTime= (counter-1)*30/60; //minutes

Activetime.setText(“Active time : “+ activeTime +

“ minutes \n”);

activeTimeInHours=activeTime/60;

totalDistanceInMiles=TotalDistance/(float)1609.344;

A=(float) 0.0195;

B= (float)-0.00436;

C=(float)0.00245;

K=1;

weightInKgs=(float)Double.parseDouble(Weight.getTex

t().toString());

weightInPounds=weightInKgs*(float)2.20462;

D= (float)((Math.pow(weightInPounds/145,

0.425)*0.000801)/weightInPounds);

V=(totalDistanceInMiles/activeTimeInHours); //Walking

Speed (mph) – Limited to a minimum of 1 mph and a

maximum of 5 mph

ratePerPound=

(float)(A+(B*V)+(C*Math.pow(V,2))+(K*D*Math.pow(

V,3)));

walkingBurnedCalories= ratePerPound*weightInPounds;

WalkingBurnedCalories.setText (“Walking burned

calories : “+ walkingBurnedCalories + “ calories \n”);

}

Get weather temperature: The following steps show,

how weather information is collected.

1) To acquire data from temperature and humidity

sensor, an instance of the SensorManager class is

created. This instance is used to get the physical

sensor.

2) Register a sensor listener in the onResume()

method, and start handling incoming sensor data

in the onSensorChanged() callback method.

International Journal of Electronics and Electrical Engineering Vol. 3, No. 4, August 2015

©2015 Engineering and Technology Publishing 328

3) Implement onAccuracyChanged() and

onSensorChanged() callback methods. The sensor

is unregistered when an activity pauses to prevent

the sensor form continually sensing data and

draining the battery.

The code shown in Appendix (b) uses the temperature

and humidity sensor to get the weather, room temperature

and then display it for the user.

Share pictures: In order to share pictures, the

following code issues a HTTP POST request to share a

photo with friends or healthcare professionals.

params.putString(“caption”, “FbAPIs Sample App photo

upload”);

Utility.mAsyncRunner.request(“me/photos”, params,

“POST”, new PhotoUploadListener(), null);

V. COMPARATIVE ANALYSIS

A number of recent applications designed in the

context of integrating wireless sensor networks with

online social networks can be examined for the purpose

of comparison. The existing platform applications such

as Google Latitude shares the collected mobile position

data of the user among different users, and then it

generate proximity alerts when two linked users are

within geographical proximity of one another. These

applications are limited and target specific service only.

In this work, ‘AppName’ not only uses the built-in

sensors of the user mobile device to get current location

coordinates, view user current location, share location,

show nearby places, and show nearby friends, but also

provides more services such as clustering nearby friends,

tracking distance moved, calories burned and active time,

getting weather temperature and sharing pictures. The

data privacy is enforced by two options. The first option

is available on all available social network platforms,

while the second option of using roles versus data levels

model.

VI. CONCLUSION

In this paper, the framework and implementation of

‘AppName’ was presented. A number of sensors were

used to build a sensing application that enables members

of social network to share their information with their

contacts in a private manner. The user can see if any of

his/her contacts are checked-in nearby. It was shown that

contacts can be clustered based on colleagues, family or

any other criterion. The clustering process takes place in

the user device. ‘AppName’ is a great tool for fitness,

weight loss, calorie counting, etc., and can facilitate

quicker monitoring of, for example, sugar levels of the

user through social network by concerned healthcare

units. Social constraints such as privacy were addressed

in two ways: simple like turn application ON or OFF;

and the other by privacy aware data connectivity based

on user roles.

APPENDIX

a. Clustering Nearby Contacts

Bundle params3 = new Bundle();

params3.putString(“method”, “fql.query”);

params3.putString(“query”, “SELECT name,

education_history FROM user WHERE uid =me()”);

String response3 = Utility.mFacebook.request(params3);

response3 = “{\”data\”:” + response3 + “}”;

JSONObject json3 = Util.parseJson(response3);

String

MyCollege=json3.getJSONArray(“data”).getJSONObje

ct(0).getJSONArray(“education_history”).getJSONObjec

t(0).getString(“name”);

params3.putString(“query”, “SELECT

name,uid,education_history FROM user WHERE

(“+query+ “) AND ‘“+ MyCollege +”’ IN

education_history”);

response3 = Utility.mFacebook.request(params3);

response3 = “{\”data\”:” + response3 + “}”;

json3 = Util.parseJson(response3);

data3=json3.getJSONArray(“data”);

for (int i = 0, size2 = data3.length(); i <size2; i++)

{

Nearby_college_id[i]=data3.getJSONObject(i).getLong(“

uid”);

}

int counter4=0;

for (int i = 0, size = counter3; i < size; i++){

 if(Nearby_friend_id[i].equals(Nearby_college_id[c

ounter4]))

{

friends_Locations.append(Nearby_friend_Name[i]+”

checked in “+placeName[i] +” at “+

created_time[i]+”\n”);

counter4++; } }

}

catch (MalformedURLException e) {

e.printStackTrace();

} catch (IOException e) {

e.printStackTrace();

}

catch (FacebookError e) {

e.printStackTrace();

} catch (JSONException e) {

e.printStackTrace();

} } }); }

b. Weather Information

private SensorManager mSensorManager;

private Sensor mTemperature;

publicclass Temperature extends Activity implements

SensorEventListener {

private SensorManager mSensorManager;

private Sensor mTemperature;

private TextView displayTemperature;

@Override

publicfinalvoid onCreate(Bundle savedInstanceState) {

super.onCreate(savedInstanceState);

 setContentView(R.layout.main);

// Get an instance of the sensor service, and use that to

get an instance of

International Journal of Electronics and Electrical Engineering Vol. 3, No. 4, August 2015

©2015 Engineering and Technology Publishing 329

// a particular sensor.

mSensorManager = (SensorManager)

getSystemService(Context.SENSOR_SERVICE);

mTemperature =

mSensorManager.getDefaultSensor(Sensor.TYPE_AMBI

ENT_TEMPERATURE);

displayTemperature = (TextView)

findViewById(R.id.friends_Locations);

 }

@Override

publicfinalvoid onAccuracyChanged(Sensor sensor, int

accuracy) {

 }

@Override

publicfinalvoid onSensorChanged(SensorEvent event) {

float Temperature = event.values[0];

displayTemperature.setText(“Temperature : “+

Temperature + “ C”);

 }

@Override

protectedvoid onResume() {

// Register a listener for the sensor.

super.onResume();

mSensorManager.registerListener(this, mTemperature,

SensorManager.SENSOR_DELAY_NORMAL);

 }

@Override

protectedvoid onPause() {

// Be sure to unregister the sensor when the activity

pauses.

super.onPause();

mSensorManager.unregisterListener(this);

 }

}

REFERENCES

[1] M. Blackstock, R. Lea, and A. Friday, “Uniting online social
networks with places and things,” in Proc. the Second

International Workshop on Web of Things, New York, NY, USA,

2011.
[2] C. Aggarwal and T. Abdelzaher, “Integrating sensors and social

networks,” in Social Network Data Analytics, Springer, 2011, ch.

14, pp. 379-412.
[3] E. Miluzzo, N. D. Lane, S. B. Eisenman, and A. T. Campbell,

“CenceMe: Injecting sensing presence into social network

applications using mobile phones,” in Proc. 2nd European
Conference on Smart Sensing and Context, Springer, Oct. 2007,

pp. 1-28.
[4] R. Ganti, N. Pham, H. Ahmadi, S. Nangia, and T. Abdelzaher,

“GreenGPS: A participatory sensing fuel-efficient maps

application,” in Proc. Mobisys, San Francisco, CA, Jun. 2010, pp.
151-164.

[5] Q. Memon and S. A. Khoja, “Semantic web for program

administration,” International Journal of Emerging Technologies

in Learning, vol. 5, no. 4, 2010.

[6] A. Moravejosharieh, H. Modares, and R. Salleh, “Overview of

mobile IPv6 security,” in Proc. 3rd International Conference on
Intelligent Systems, Modelling and Simulation, 2012, pp. 584-587.

[7] Q. Memon, “A new approach to video security over networks,”

International Journal of Computer Applications in Technology,
vol. 25, pp. 72-83, 2006.

[8] Y. Altshuler, Y. Elovici, N. Aharony, and A. Pentland, Security

and Privacy in Social Networks, Springer, 2012.
[9] M. Huber, M. Mulazzani, E. Weippl, G. Kitzler, and S. Goluch,

“Exploiting social networking sites for spam,” in Proc. 17th ACM

Conference on Computer and Communications Security, NY,
USA, 2010, pp. 693-695.

[10] B. Fung, K. Wang, R. Chen, and P. S. Yu, “Privacy-Preserving

data publishing: A survey of recent developments,” ACM
Computing Surveys, vol. 42, no. 4, 2010.

[11] K. M. Karkanen, “Walking/Running heart rate monitoring system,”

U.S. Patent 6013009, Jan. 11, 2000.

International Journal of Electronics and Electrical Engineering Vol. 3, No. 4, August 2015

©2015 Engineering and Technology Publishing 330

http://dl.acm.org/author_page.cfm?id=81320492759&coll=DL&dl=GUIDE&CFID=519664316&CFTOKEN=66012572
http://dl.acm.org/author_page.cfm?id=81320492159&coll=DL&dl=GUIDE&CFID=519664316&CFTOKEN=66012572
http://dl.acm.org/author_page.cfm?id=81100300375&coll=DL&dl=GUIDE&CFID=519664316&CFTOKEN=66012572
http://dl.acm.org/author_page.cfm?id=81100210909&coll=DL&dl=GUIDE&CFID=519664316&CFTOKEN=66012572
http://ieeexplore.ieee.org.ezproxy.uaeu.ac.ae/search/searchresult.jsp?searchWithin=p_Authors:.QT.Modares,%20H..QT.&searchWithin=p_Author_Ids:38231101800&newsearch=true
http://ieeexplore.ieee.org.ezproxy.uaeu.ac.ae/search/searchresult.jsp?searchWithin=p_Authors:.QT.Modares,%20H..QT.&searchWithin=p_Author_Ids:38231101800&newsearch=true

