Design of a Tunable Active Low Pass Filter by CMOS OTA and a Comparative Study with NMOS OTA with Different Current Mirror Loads

T. K. Das and S. Chakrabarti
Future Institute of Engg. and Management/ECE Department, Kolkata, India
Email: tarun_fiem@rediffmail.com, sreya.broy@gmail.com

Abstract—The operational amplifiers (OPAMP) are basic building blocks in implementing a variety of analog circuits such as amplifiers, filters, integrators, differentiators, summers, oscillators etc. OPAMPs work well for low-frequency applications, such as audio and video systems. For higher frequencies, however, OPAMP designs become difficult due to their frequency limit. At those high frequencies, operational transconductance amplifiers (OTAs) are deemed to be promising to replace OPAMPs as the building blocks. This paper illustrates an application of OTA as an active low pass filter. The primary building block of an OTA is the current mirror. In this paper different current mirrors are used to design the LPF & the corresponding frequency and phase responses are comparatively studied. Also a comparative study of CMOS OTA & NMOS OTA is also illustrated in this paper. Finally, the applications of OTA based LPF are also studied.

Index Terms—complementary MOSFET, current mirror, low pass filter, operational transconductance amplifier

I. INTRODUCTION

An active low pass filter is an analog circuit that is widely used in communication systems and signal processing to pass a range of frequencies & reject the higher frequency [1]. It can be easily designed by a conventional operational amplifier. But CMOS operational transconductance amplifier can be used to design a LPF resulting reduced power dissipation & fabrication cost [1]-[5]. Some earlier works are enlisted in the references [6]-[11] where CMOS OTA is used. But in this paper we have started our work with NMOS OTA with different current mirror loads. Then we have designed the LPF by CMOS OTA with different current mirror loads. Finally a comparative study was investigated to draw the conclusion that CMOS OTA is much more superior to NMOS OTA in designing analog circuits.

II. THEORY AND PRINCIPLES

A. Basic Concept of OTA

An OTA is a voltage controlled current source, more specifically the term “operational” comes from the fact that it takes the difference of two voltages as the input for the output current conversion. The ideal transfer characteristic is therefore,

\[I_{out} = g_m(V_{in}^+ - V_{in}^-) \]

where \(V_{in}^+ \) = Input voltage applied at the non-inverting input terminal of the OTA, \(V_{in}^- \) = Input voltage applied at the inverting input terminal of the OTA and \(g_m \) = Transconductance of the OTA.

An ideal OTA has two voltage inputs with infinite impedance (i.e. there is no input current). The common mode input range is also infinite, while the differential signal between these two inputs is used to control an ideal current source (i.e. the output current does not depend on the output voltage) that functions as an output. The proportionality factor between output current and input differential voltage is called transconductance. Fig. 1, Fig. 2 and Fig. 3 show the macro model, ideal model and small signal equivalent model of OTA respectively.

Figure 1. Macro model of OTA.

Figure 2. Ideal model of OTA.

Figure 3. Small signal equivalent model of OTA.
The amplifier’s output voltage is the product of its output current and its load resistance:

\[V_{\text{out}} = I_{\text{out}} \cdot R_{\text{load}} \]

(2)

The voltage gain is then the output voltage divided by the differential input voltage:

\[G_m = \frac{V_{\text{out}}}{V_{\text{in}} - V_{\text{in}} \cdot g_m} = R_{\text{load}} \cdot g_m \]

(3)

B. Current Mirror Fundamentals

An OTA is basically a differential amplifier with active current mirror load to accomplish high gain. As the name itself suggests a current mirror is used to generate a replica (if necessary it may be attenuated or amplified) of a given reference current. If we look at the electric function of the circuit, a current mirror is a current controlled current source (CCCS).

A current mirror is basically nothing more than a current amplifier. The ideal characteristics of a current amplifier are:

- Output current linearly related to the input current, \(I_{\text{out}} = A_1 \cdot I_{\text{ref}} \)
- Input resistance is zero
- Output resistance is infinity

In addition, we have the characteristic \(V_{\text{min}} \) which applies not only to the output but also the input. \(V_{\text{min}} \) is the range of input voltage over which the input resistance is not small and \(V_{\text{min}} \) (out) is the range of the output voltage over which the output resistance is not large. Fig. 4, Fig. 5 and Fig. 6 show the block diagram, transfer characteristics and output characteristics of a current mirror respectively.

Therefore, we will focus on \(R_{\text{out}}, R_{\text{in}}, V_{\text{min}} \) (out), \(V_{\text{min}} \) (in), and \(A_1 \) to characterize the current mirror. We can design a number of circuits which can accomplish the current mirror function. The ones mostly used are:

1. Simple Current Mirror
2. Wilson Current Mirror
3. Cascode Current Mirror

Simple current mirror (Widlar)

Fig. 7 below shows the schematic circuit diagram of a simple current mirror.

\[\frac{i_{\text{out}}}{i_{\text{ref}}} = \frac{LW_2}{LW_1} \left(\frac{V_{\text{DS}2} - V_{\text{T2}}}{V_{\text{DS}1} - V_{\text{T1}}} \right)^2 \left(1 + \lambda V_{\text{DS}2} \right) \left(K_1^{-1} \right) \]

(4)

If the transistors are matched, then \(K_1^{-1} = K_2^{-1} \) and \(V_{\text{DS1}} = V_{\text{DS2}} \) to give:

\[\frac{i_{\text{out}}}{i_{\text{ref}}} = \left(\frac{LW_2}{LW_1} \right) \left(1 + \lambda V_{\text{DS2}} \right) \]

(5)

If \(V_{\text{DS1}} = V_{\text{DS2}} \) then, we have

\[\frac{i_{\text{out}}}{i_{\text{ref}}} = \left(\frac{LW_2}{LW_1} \right) \]

(6)

Therefore the sources of errors are:

1) \(V_{\text{DS1}} \) and \(V_{\text{DS2}} \) are not equal.
2) M1 and M2 are not matched.
3) Channel length modulation (\(\lambda \)) and
4) Threshold offset.

Fig. 8 shows the small signal equivalent model of a simple current mirror.

\[\frac{i_{\text{out}}}{i_{\text{ref}}} = \frac{g_{m2} / g_{m1}}{1 + S(C_{g1} + C_{g2}) / g_{m1}} \]

(7)

Wilson current mirror

Fig. 9 below shows the schematic circuit diagram of a Wilson current mirror.
Here, $V_{GS1} = V_{GS2}$, so I_{D1} is almost equal to I_{D2}. Then,

$$I_{out} = \frac{W}{L_1} \left(1 + \lambda V_{DS2} \right)$$

(8)

Since, $V_{DS1} = V_{DS2} + V_{GS3}$

$$I_{ref} = \frac{W}{L_2} \left(1 + \lambda V_{DS2} \right) \left(1 + \lambda (V_{DS2} + V_{GS3}) \right)$$

(9)

The output voltage swing is limited to

$$V_{out, min} = I_{GS2} + V_{DSat,3} > V_{TH} + 2V_{DSat}$$

(10)

It uses negative series feedback (M3) to achieve higher output resistance. Fig. 10 shows the small signal equivalent model of a Wilson current mirror.

The output swing is limited to

$$V_{out, min} = I_{GS2} + V_{DSat,3} > V_{TH} + 2V_{DSat}$$

(13)

$$V_{out, min} = I_{GS2} + V_{DSat,3} > V_{TH} + 2V_{DSat}$$

(14)

Hence, the output resistance is increased without feedback.

C. NMOS OTA Design with Current Mirror Loads

Fig. 13, Fig. 14 and Fig. 15 show the circuit diagram of NMOS OTA with simple, Wilson and cascode current mirror loads respectively.
Principle of operation (simple current mirror load)

In NMOS OTA the M1 and M2 transistors are operated in saturation region i.e. they satisfy the equations:

\[V_{DS1} > V_{GS1} - V_{T1} \quad \& \quad V_{DS2} > V_{GS2} - V_{T2} \]

(15)

The current equations are:

\[I_{D1} = 0.5K_n(V_{GS1} - V_{T1}) \]

(16)

\[I_{D2} = 0.5K_n(V_{GS2} - V_{T2}) \]

(17)

The sink current,

\[I_{SS} = I_{D1} + I_{D2} \]

(18)

M1 and M2 are assumed to be perfectly matched i.e. \(K_{n1} = K_{n2} \) and \(V_{T1} = V_{T2} \). Two cases may be possible.

Case 1: If \(V_{GS1} > V_{GS2} \), then \(I_{D1} \) increases with respect to \(I_{D2} \) since \(I_{SS} = I_{D1} + I_{D2} \). This increase in \(I_{D1} \) implies an increase in \(I_{D3} \) and \(I_{D4} \). However, \(I_{D2} \) decreases when \(V_{GS1} \) is greater than \(V_{GS2} \). Therefore the only way to establish circuit equilibrium is for \(I_{OUT} \) to become positive and \(V_{OUT} \) decreases.

Case 2: If \(V_{GS1} > V_{GS2} \), the accordingly it can be seen that \(I_{OUT} \) becomes negative and \(V_{OUT} \) increases.

In this way a differential voltage is converted to output current and hence the name “operational transconductance amplifier” is justified. Other configurations of NMOS OTA can also be explained accordingly. Fig. 16 shows the small signal equivalent model of NMOS OTA with simple current mirror load.

Limitations of NMOS OTA

- Power dissipation is high.
- Bandwidth is less.
- Noise Margin is low.

D. CMOS OTA Design With Current Mirror Loads

The best suited component for design of OTA is CMOS devices as it has the following advantages:

- Very less power dissipation as the feature size of CMOS processes reduce.
- CMOS provides the highest analog-to-digital on-chip integration.
- Overall fabrication cost is less.
- Noise margin is high and stability performance is better.
- CMRR, Slew rate, and PSRR are improved.
- Switching speed is very high.
In CMOS OTA the differential amplifier part is exactly same as NMOS OTA, consisting of two NMOS enhancement mode transistors. But the current mirror part (I-V conversion) is made of PMOS enhancement mode transistors as shown in the following figures. Fig. 17, Fig. 18 and Fig. 19 show the circuit diagram of CMOS OTA with simple, Wilson and cascode current mirror loads respectively.

Fig. 20 below shows the small signal equivalent model of CMOS OTA with simple current mirror load.

![Small signal equivalent model of CMOS OTA with simple current mirror load.](image)

E. Low Pass Filter Fundamentals

A filter is a device that passes electric signals at certain frequencies or frequency ranges while preventing the passage of others. The active filters differ from passive filters (simple RC circuits) by the fact that there is the ability for gain depending on the configuration of the elements in the circuit. It consists of active elements like BJT, Opamp, FET, and MOSFET. In our design we have used NMOS OTA & CMOS OTA to design an active Low Pass Filter (LPF).

The low pass filter is one that allows low frequencies to pass and stops (attenuates) higher frequencies. The design of a low pass filter needs to take into consideration the maximum frequency that would need to be allowed through. This is called the cut off frequency (or the 3dB down frequency). Based on the type of filter that is used (e.g. Butterworth, Bessel etc.) the attenuation of the higher frequencies can be greater. This attenuation is also based on the order (e.g. 1st, 2nd, 3rd...) of the filter that is used. Based on the order of the filter the roll-off of the filter can be calculated using the formula $-\alpha \times 20 \text{dB/decade}$. This means that a first order low pass filter has an attenuation of -20dB/decade, while a second order filter should have -40dB/decade roll-off and on down the list for higher orders. Fig. 21 shows the typical frequency response curves of low pass filter for different orders.

![Frequency response curves of low pass filter.](image)

The transfer function of the filter section is,

$$A(s) = \frac{V_{out}(s)}{V_{in}(s)} = \frac{1}{s + \frac{1}{RIC1}} = \frac{1}{1 + SRIC1} \quad (18)$$

where the complex frequency variable, $s = \sigma + jw$ allows for any time variable signals. For pure sine waves, the damping constant, σ becomes zero and $s = jw$. For a normalized presentation of the transfer function, s is referred to the filter’s corner frequency, or -3 dB frequency, w_c in rad/sec, and has these relationships:

$$s = \frac{jw}{w_c} = \frac{jf}{f_c} \quad (19)$$

The magnitude of the gain response is:

$$|A(w)| = \frac{1}{\sqrt{1 + \left(\frac{w}{w_c}\right)^2}} \quad (20)$$

At $w = w_c$ the magnitude of the gain is 0.707 or -3dB. Hence, the pass band is: $0 < w < w_c$, and the stop band is: $w > w_c$.

We have $w_c = \frac{1}{R1C1}$. The roll off factor for 1st order LPF is -20dB/decade. The phase angle of the sinusoidal transfer function of the 1st order LPF is formulated as follows.

$$\angle A(w) = -\tan^{-1}(wR1C1) \quad (21)$$

At $w = w_c$, the phase angle becomes -45° and as w tends to infinity, the phase angle tends to -90° which concludes that the order of the filter is 1.

III. PROPOSED 1ST ORDER LPF DESIGN BY NMOS OTA

Fig. 22 shows the circuit diagram of our proposed low pass filter by OTA.

![Circuit diagram of proposed low pass filter.](image)

The working of the proposed circuit has been verified using PSpice simulation. The PMOS and NMOS transistors have been simulated by respectively using the parameters of a 0.25mm TSMC CMOS technology. The aspect ratios of PMOS and NMOS transistors are 2:1 dimensionally. First we investigated different parameters of NMOS OTA and CMOS OTA as defined below and their measured values are listed in Table I. Here we have...
set, Vdd=5V, C\text{load}=1pF for all the circuits and tuned ISS to get positive output voltage. The calculations are done according to the following definitions of the parameters.

1) Output Offset Voltage (V_{oo}) is the output voltage, V_{out} with $V_{\text{in+}}=V_{\text{in-}}=0V$

2) $\text{CMRR}(dB) = 20\log \left(\frac{A_{\text{d}}}{A_{\text{cm}}} \right)$ \hspace{1cm} (22)

where, A_{d}=Differential Voltage gain and A_{cm}=Common mode voltage gain.

3) $\text{PSRR}(dB) = 20\log \left(\frac{V_{\text{out}}}{V_{\text{id}}(V_{\text{dd}} = 0V)} \right) \left/ \frac{V_{\text{id}}(V_{\text{dd}} = 0V)}{V_{\text{dd}}} \right.$ \hspace{1cm} (23)

4) $\text{Slew Rate (SR)} = \frac{\Delta V_{\text{out}}}{\Delta t}$ \hspace{1cm} (24)

For $V_{\text{in+}}=u(t)$, unit step signal with $V_{\text{in-}}=0V$.

Figure 23. Gain (db) vs. frequency (Hz) plot of a 1st order LPF using NMOS OTA with simple current mirror load

Figure 24. Phase angle (degree) vs. frequency (Hz) plot of a 1st order LPF using NMOS OTA with simple current mirror load

Figure 25. Gain (dB) vs. frequency (Hz) plot of a 1st order LPF using NMOS OTA with Wilson current mirror load

Figure 26. Phase angle (degree) vs. frequency (Hz) plot of a 1st order LPF using NMOS OTA with Wilson current mirror load

Figure 27. Gain (dB) vs. frequency (Hz) plot of a 1st order LPF using NMOS OTA with cascode current mirror load

Figure 28. Phase angle (degree) vs. frequency (Hz) plot of a 1st order LPF using NMOS OTA with cascode current mirror load

Figure 29. Gain (dB) vs. frequency (Hz) plot of a 1st order LPF using CMOS OTA with simple current mirror load

Figure 30. Phase angle (degree) vs. frequency (Hz) plot of a 1st order LPF using CMOS OTA with simple current mirror load

Figure 31. Gain (dB) vs. frequency (Hz) plot of a 1st order LPF using CMOS OTA with Wilson current mirror load

Figure 32. Phase angle (degree) vs. frequency (Hz) plot of a 1st order LPF using CMOS OTA with Wilson current mirror load

Figure 33. Gain(dB) vs. frequency (Hz) plot of a 1st order LPF using CMOS OTA with cascode current mirror load

©2015 Engineering and Technology Publishing
and phase angle (degree) vs. frequency (Hz) plots for 1st order LPF using CMOS OTA with cascode current mirror load.

Fig. 35 shows the basic block diagram of a PLL synthesizers, television display systems & many other circuits. It is the basic building block of FM demodulators, stereo demodulators, tone decoders, frequency synthesizers, television display systems & many other circuits. In Fig. 36 the maximum pass band gain in dB, high cut-off frequency and its corresponding gain in dB are indicated. In Fig. 23 the phase angle at high cut-off frequency and also that as frequency tends to infinity are indicated. In Table I a parameter values of NMOs OTA and CMOS OTA are listed. In Table II all the specifications of the designed low pass filter are listed for all the circuits. In Table III the static power dissipations for all the circuits are listed.

Table I. Parameters of NMOs OTA and CMOS OTA

<table>
<thead>
<tr>
<th>Type of OTA</th>
<th>Type of current mirror load</th>
<th>Output offset voltage (Vdd)</th>
<th>CMRR (dB)</th>
<th>PSRR (dB)</th>
<th>Slew Rate (V/μs)</th>
<th>Bias Voltage (Vdd) (Volts)</th>
<th>Sink Current (ISS) (μA)</th>
</tr>
</thead>
<tbody>
<tr>
<td>NMOS</td>
<td>Simple</td>
<td>11.95mV</td>
<td>152.07</td>
<td>190.39</td>
<td>35.08</td>
<td>5</td>
<td>500μA</td>
</tr>
<tr>
<td></td>
<td>Wilson</td>
<td>527.86mV</td>
<td>7.1027</td>
<td>32.44</td>
<td>30.79</td>
<td>5</td>
<td>100μA</td>
</tr>
<tr>
<td></td>
<td>Cascode</td>
<td>527.86mV</td>
<td>0.31</td>
<td>32.53</td>
<td>4.41</td>
<td>5</td>
<td>100μA</td>
</tr>
<tr>
<td>CMOS</td>
<td>Simple</td>
<td>13.57mV</td>
<td>168.81</td>
<td>190.06</td>
<td>184.45</td>
<td>5</td>
<td>500μA</td>
</tr>
<tr>
<td></td>
<td>Wilson</td>
<td>12.81mV</td>
<td>9.54</td>
<td>13.98</td>
<td>41.63</td>
<td>5</td>
<td>100μA</td>
</tr>
<tr>
<td></td>
<td>Cascode</td>
<td>527.86mV</td>
<td>15.86</td>
<td>32.40</td>
<td>51.76</td>
<td>5</td>
<td>100μA</td>
</tr>
</tbody>
</table>

Table II. Specifications of NMOs and CMOS OTA Based 1st Order LPF

<table>
<thead>
<tr>
<th>Type of OTA</th>
<th>Type of current mirror load</th>
<th>High cut-off frequency (fH) (kHz)</th>
<th>Maximum pass-band gain (dB)</th>
<th>Slope of the magnitude plot (dB/Decade)</th>
<th>Phase angle at fH (degree)</th>
<th>Phase angle as frequency tends to infinity (degree)</th>
</tr>
</thead>
<tbody>
<tr>
<td>NMOS</td>
<td>Simple</td>
<td>1.5901</td>
<td>-9.54</td>
<td>-19.89</td>
<td>-44.88</td>
<td>-89.03</td>
</tr>
<tr>
<td></td>
<td>Wilson</td>
<td>1.5901</td>
<td>-6.05</td>
<td>-19.89</td>
<td>-44.88</td>
<td>-89.03</td>
</tr>
<tr>
<td></td>
<td>Cascode</td>
<td>1.5901</td>
<td>-7.94</td>
<td>-19.89</td>
<td>-44.24</td>
<td>-89.23</td>
</tr>
<tr>
<td>CMOS</td>
<td>Simple</td>
<td>1.5901</td>
<td>-2.81m</td>
<td>-19.89</td>
<td>-44.88</td>
<td>-89.77</td>
</tr>
<tr>
<td></td>
<td>Wilson</td>
<td>1.5901</td>
<td>-5.53m</td>
<td>-19.89</td>
<td>-44.88</td>
<td>-89.91</td>
</tr>
<tr>
<td></td>
<td>Cascode</td>
<td>1.5901</td>
<td>-9.65m</td>
<td>-19.89</td>
<td>-44.95</td>
<td>-89.93</td>
</tr>
</tbody>
</table>

Table III. Static Power Dissipation

<table>
<thead>
<tr>
<th>Type of OTA</th>
<th>Type of current mirror load</th>
<th>Bias voltage, Vdd (Volts)</th>
<th>Sink Current (ISS)</th>
<th>Static Power Dissipation</th>
</tr>
</thead>
<tbody>
<tr>
<td>NMOS</td>
<td>Simple</td>
<td>5</td>
<td>500μA</td>
<td>2.5mW</td>
</tr>
<tr>
<td></td>
<td>Wilson</td>
<td>5</td>
<td>122μA</td>
<td>0.61mW</td>
</tr>
<tr>
<td></td>
<td>Cascode</td>
<td>5</td>
<td>43μA</td>
<td>0.22mW</td>
</tr>
<tr>
<td>CMOS</td>
<td>Simple</td>
<td>1</td>
<td>168.81</td>
<td>5W</td>
</tr>
<tr>
<td></td>
<td>Wilson</td>
<td>1</td>
<td>9.54</td>
<td>3pW</td>
</tr>
<tr>
<td></td>
<td>Cascode</td>
<td>1</td>
<td>15.86</td>
<td>2.1pW</td>
</tr>
</tbody>
</table>

V. APPLICATIONS OF OTA BASED LPF

A. In Phase Locked Loop

The Phase locked loop (PLL) is a frequency-selective feedback system which can synchronize with a selected input signal and track the frequency changes associated with it. It is the basic building block of FM demodulators, stereo demodulators, tone decoders, frequency synthesizers, television display systems & many other circuits. Fig. 35 shows the basic block diagram of a PLL with our proposed OTA based LPF as the loop filter.

B. In DSB-SC Demodulator

In Double Side Band Suppressed Carrier (DSB-SC) demodulator circuit our proposed OTA based LPF can be used as shown in Fig. 36 below.

Here we have only shown two applications of OTA based LPF. There are many circuits in communication systems and signal processing systems where the conventional OPAMP based LPF can be replaced by our proposed OTA based LPF to get better result.
VI. CONCLUSIONS

From Table III we can conclude that the CMOS based OTA reduces the static power dissipations drastically & also the pass band gain is nearer to 0dB i.e. unity gain which is our objective. It may be further noted that the bias voltage for CMOS OTA is reduced greatly. We call our proposed OTA based LPF as tunable because by adjusting the values of power supply and sink current we can get different pass band gain less than unity. Again, the high cut-off frequency can be adjusted by changing simply the values of resistor, R and capacitor, C of the input RC section. The other advantages of our design over conventional OPAMP based LPF are (1) a single power supply is required, (2) CMRR, PSRR, slew rate are better. (3) noise margin is high, (4) design is very simple, (5) fabrication cost is reduced greatly.

VII. FUTURE SCOPE

Here we have designed a 1st order LPF with different current mirror loads and a comparative study was analyzed. The OTA can be used to design higher order filters to get more ideal frequency response by simply including more RC sections at the non-inverting terminal of the OTA. Also the higher pass band can be obtained by changing the value of R and C. Again, pass band gain can be increased by adding a feedback resistor voltage divider section at the inverting input terminal of the OTA. The OTA can be designed practically in IC fabrication lab and the practical applications of OTA based LPF can be studied. In our design for the CMOS OTA we have used NMOS transistors to design the differential amplifier with PMOS transistors for the current mirror section. These transistors can be interchanged & the change at the output can be studied.

REFERENCES