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Abstract—The use of programmable devices leads to flexible 

and area-efficient implementation of biologically plausible 

neural entities such as synapses and neurons. However, the 

area constraints of reconfigurable devices such as the Field 

Programmable Gate Arrays (FPGAs) limit their use to 

rather small and already trained neural networks. This 

paper investigates and describes area-efficient spiking 

neural building blocks to implement integrate-and-fire (IF) 

and leaky integrate-and-fire (LIF) neuron models on 

reconfigurable hardware. It is demonstrated that an 

abstract behaviour of spiking neurons can be emulated for 

bit accurate implementation. In a linear comparison, 2×103 

synapses and 1.2×103 fully parallel artificial spiking neurons 

can be implemented with the proposed building blocks and 

architectures. By using bigger devices with more logic 

elements such as Virtex-5, it is possible to fit almost 4.3×103 

synapses and 2.5×103 neurons. The main contributions of 

this paper include area-efficient fully parallel architectures 

that exclude the use of embedded multipliers, area-efficient 

architecture for a leaky membrane, and compact 

implementation of neural cell which can be used for 

emulating large scale fully parallel spiking neural networks. 
 

Index Terms—neural engineering, reconfigurable neural 

architectures, neuromorphic hardware 

 

I. INTRODUCTION 

Inspired by the way the human brain processes 

information, scientists have been researching neural 

networks (NNs) since the early 1940s [1]. Neural 

Networks (NNs) are information processing paradigm 

inspired by the way mammalian nervous systems process 

information. The key element of this paradigm is the 

structure of the information processing system which is 

composed of a large number of highly interconnected 

processing elements, neurons, working in parallel to solve 

a specific problem.  

The neuron is made up of four main parts; dendrites, 

synapses, axon and the cell body. It is known that a 

neuron is essentially a system that accepts electrical 

currents which arrive on its dendrites. It sums these and if 

they exceed a certain threshold it generates a new pulse 

which propagates along an axon. The information is 

transmitted from an axon to a dendrite via a synapse by 

means of diffusing chemical neurotransmitters across the 

synaptic cleft.  
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The concept of building biologically plausible 

electronic circuits and systems was first pioneered by 

Carver Mead in the late 1980s [2]. He named this area 

“Neuromorphic Engineering” and the key motivation was 

to reverse engineer the properties or information found in 

neurobiological systems and develop artificial systems 

that, to some extent, mimicked biology. Spiking neural 

networks are believed to be the most biologically 

plausible and temporal patterns in nerve impulse trains 

have been detected biologically in the visual, motor, and 

auditory systems [3], [4]. Synchronous spike activity has 

been detected in various experiments [1], [5], [6] and 

such a wide range of evidence implies that the nervous 

system probably does utilise temporal structures and the 

exact timing of spikes is likely to play an important role 

in biological information processing. The spatio-temporal 

nature of bio plausible neural systems is more favourable 

for hardware implementation where signals can be 

represented in binary form. Different implementation 

platforms exist including Application Specific Integrated 

Circuits (ASICs), Digital Signal Processors (DSPs) and 

the most promising, reconfigurable hardware such as 

FPGAs. The question arises as to how efficiently neural 

cells could be emulated for large scale implementation. 

One of the bottlenecks in neural hardware 

implementation is multipliers and weight storage. 

Possible solutions to this problem are area-efficient 

architectures and multiplier reduction schemes. Spiking 

neural networks from neurocomputing perspective are 

examined for two main reasons, first to understand and 

reproduce the information processing in the brain and 

secondly to use the results for computing/engineering 

related tasks. The work presented in this paper is focused 

on the former aspect. The maximum number of neurons 

that can be implemented on reconfigurable hardware is 

restricted by the resources available on the target device. 

Neural models exhibit extensive use of multiply 

operations which consume significant hardware resources. 

In spiking neuron model, the output is computed based on 

the weighted sum of its inputs. The multiplication 

between inputs and weights is the bottleneck for an area-

efficient implementation because multipliers require a lot 

of chip area. It is of great importance for large scale 

hardware implementation that the number of multipliers 

used are reduced, optimised or completely avoided. This 

paper investigates area-efficient multiplier-less 

architectures which can be used for hardware 
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implementation of spiking neuron models. An appropriate 

time-efficient and bit-accurate design flow for spiking 

neural network implementation is devised and area-

efficient building blocks for integrate-and-fire (IF) and 

leaky integrate-and-fire (LIF) neuron models were 

investigated. The contents of this paper are organised as 

follows: 

Section II discusses neuron models chosen for this 

research and Section III details the IF and LIF 

reconfigurable architectures and synaptic membrane 

modelling. Finally, a discussion of the performance 

obtained, limitations, paper findings and possible areas of 

improvement are concluded in Section IV.  

II. HARDWARE MODELLING OF SPIKING NEURONS 

In contrast to classical neural networks, biological 

neurons process their information through short pulses, 

called spikes. A spike is transmitted through an axon 

which connects with other neurons through dendrites. 

Ideally, each spike contributes to the membrane potential 

by accumulating corresponding post synaptic potential. 

Broadly speaking, if an incoming spike leads to an 

increase in the membrane potential then it is called an 

EPSP (Excitatory Post Synaptic Potential) otherwise it is 

called an IPSP (Inhibitory Post Synaptic Potential). Once 

the neuron has fired, it resets its membrane potential. This 

process continues and all neurons in the network keep 

communicating with other neighbouring neurons. The 

best known and the most biologically plausible model is 

the Hodgkin-Huxley (HH) model [7]. However, there are 

other phenomenological and less realistic models which 

can demonstrate most of the characteristics presented in 

the HH neurons such as Izhikevich, Spike Response 

Model (SRM) and IF models. The most biologically 

plausible models are not well suited for hardware 

implementation as they are expensive in terms of 

computational resources. Therefore, other simplified 

models such as integrate-and-fire (IF) or leaky integrate-

and-fire (LIF) [5], [6] are more frequently used for 

hardware implementations. Software implementations are 

useful for investigating the capabilities of different 

models and their applicability but they are not adequate 

for real time processing or fully parallel large scale 

network implementations. 

A. Neuron Models 

The behaviour of high dimensional models such as HH 

is relatively more difficult to analyse, therefore reduction 

of the four dimensional equations of the HH model to one 

dimensional is highly desirable for efficient 

implementation purposes. The neuron models chosen for 

this investigation are the IF and LIF. These models are 

chosen because of their simplicity, tractability and 

biological plausibility in comparison with detailed 

compartmental models such as Hodgkin-Huxley. It is 

important to have a neural model which is fast, less 

complex, fully parallel and numerically accurate. All 

integrate-and-fire neurons can be stimulated either by 

external input current or the inputs received from 

different presynaptic neurons.  

Mathematically, the IF model can be expressed as: 

𝐼(𝑡) = 𝐶𝑚
𝑑𝑢𝑖

𝑑𝑡
             (1) 

where Cm is the membrane capacitance, ui(t) is the 

membrane potential, and I(t) is the input current. This 

model is less biologically plausible because real neurons 

do not respond instantaneously to their input stimuli. The 

perfect IF neuron model does not take into account the 

leakage current which is a time constant characteristic for 

charging and discharging of the membrane potential.  

In contrast to the perfect IF, the basic circuit of a LIF 

model consists of a resistor in parallel with a capacitor 

driven by an external current I(t). According to this 

model, total current is divided into two components and 3 

described by (2), (3) and (4). 

𝐼(𝑡) = 𝐼𝑅 + 𝐼𝐶               (2) 

𝐼(𝑡) =
𝑢𝑚(𝑡)

𝑅𝑚
+ 𝐶𝑚

𝑑𝑢𝑚

𝑑𝑡
                    (3) 

𝜏𝑚
𝑑𝑢𝑚

𝑑𝑡
= −𝑢𝑚 + 𝑅𝑚𝐼(𝑡)                      (4) 

where um is the membrane potential and τm is the 

membrane time constant of the neuron. The membrane 

potential resets to a ‘reset’ value once the neuron has 

fired.  

Existing FPGA devices offer cost effectiveness, 

capability of large scale implementation, and adequate 

speed, hence regarded as the most suitable reconfigurable 

digital platforms for modelling neural networks. 

Implementing spiking neuron models such as Hodgkin-

Huxley (HH) on digital hardware is not very efficient and 

requires a large amount of hardware resources which 

exhibit a large latency due to their large number of 

integrated variables. It is very important to select a model 

which is computationally efficient and biologically 

plausible. The integrate-and-fire model is the simplest 

spiking neuron model and several hardware architectures 

have been proposed in the literature to improve their 

implementation efficiency in terms of speed and area. 

Existing hardware implementations are mainly 

categorised as FPGA and VLSI based implementations. 

FPGA based implementations are reported in [8]-[12]. 

VLSI based implementations are widely covered in [13]-

[15]. Different fully parallel hardware platforms have 

been developed for real time parallel simulation of SNNs 

and reported in [16], [17]. One of the bottlenecks in 

implementing large scale networks on reconfigurable 

platforms is the realisation of multipliers. Although, 

existing large FPGAs have embedded multipliers, they 

are still inadequate in meeting the requirements of large 

scale networks. The state of the art FPGAs such as Virtex 

5 offers limited DSP48E slices which are still inadequate 

to provide enough multipliers. The architectures proposed 

in this paper are a continuation of the previous work 

published by authors [18] and contribute in overcoming 

the problem of a limited number of multipliers available 

on a single FPGA device. The main purpose of this study 

was to model an optimised spiking neuron cell which 

could efficiently be mapped onto reconfigurable 

platforms for large scale networks. Neural hardware 

International Journal of Electronics and Electrical Engineering Vol. 3, No. 6, December 2015

©2015 International Journal of Electronics and Electrical Engineering 458



 

implementations on FPGAs are to some extent 

unconventional as FPGAs were not originally developed 

with this in mind. Therefore it is important to adopt a 

design flow which can support the complexity in 

translating SNNs onto FPGAs and lead to optimised 

area/time-efficient implementations.  

Simulink is a well-known tool for high level modelling 

and can be interfaced with the Xilinx System Generator 

(XSG) toolbox. This can provide an integrated 

environment where an algorithm can be tested in 

MATLAB and modelled for hardware implementation. 

XSG provides a library of hardware blocks that can be 

converted into hardware description languages for 

synthesis and bit streams can be generated to map onto 

target FPGA devices. Blocks with less complexity such 

as multiplexers, gates and registers are directly converted 

into VHDL while blocks such as multipliers and 

memories are supported through Xilinx CORE Generator. 

XSG design flow is used for the experiments in this paper 

because tool support is available from algorithm 

development to the hardware implementation. The 

hardware models can be synthesised and implemented on 

target FPGAs through the ISE design suite. It is 

particularly beneficial because most of the neural 

simulators can be used within the MATLAB environment 

and their functionality can be verified. The design flow is 

time-efficient and a bit and cycle accurate design can be 

implemented on reconfigurable platforms. 

III. RECONFIGURABLE MULTIPLIERS-LESS 

ARCHITECTURES 

The proposed hardware architectures are motivated by 

the dynamics involved in the cortical spiking neurons. 

There are numerous studies about spike activity in 

cortical neurons and detailed discussion about them is out 

of the scope of this paper, the reader is referred to [19] for 

further insight. It has been observed that neurons activity 

in the cortex is highly stochastic due to the random 

synaptic transmission delays. These delays vary from 

synapse to synapse. Both synaptic delays and synaptic 

efficacies can be either fixed or variable based on the 

network activity. The inclusion of randomness in neural 

dynamics is an acceptance to the fact that very little is 

known about how neurons in the cortex interact with rest 

of the brain and outside world. The whole system might 

have considered deterministic if all these been known.  

Another possible reason for stochastic behaviour in 

neurons may be due to thermal and network noise. This 

occurs due to signal transmission and network effects 

[19], [20]. Biologists are still trying to find out the exact 

mechanisms behind these apparent stochastic behaviours 

in cortical neurons which are so reliable and fault tolerant. 

Since the cerebral cortex typically contains a very large 

number (20 billion) of neurons, the probability of a 

neuron failure in the network is high and it may be due to 

the distributed nature of neurons that tends to make them 

immune to faults. Inspired by these studies, simple and 

area efficient multiplier-less architectures were developed 

to model some of the characteristics of spiking neurons in 

the cortex.  

In spike based models such as IF or LIF, neural 

operations can be performed with basic logic gates and 

streams of input pulses. Multiplication is one of the most 

common and critical operations in many computational 

systems and is one of the bottlenecks for the 

implementation of large scale biologically plausible 

neural networks. In hardware, a traditional multiplier unit 

is extremely expensive in terms of logic utilisation and 

inefficient in terms of power consumption. Low cost 

FPGA devices don’t have dedicated multiplier units on 

chip while high end FPGA devices have limited numbers 

of dedicated multipliers, which are significantly less than 

the number of neurons that can be implemented. If a 

single synapse with a traditional 8 bit multiplier and 12 

bits resolution is to be implemented on a Virtex-II Pro 

FPGA (xc2vp50) then almost 26 slices and one 

embedded multiplier will be required. Since the total 

number of embedded multipliers available on this device 

is 232, the maximum number of synapses will be 

restricted to the maximum number of embedded 

multipliers. In the case of large networks, available logic 

has to be utilised for implementing multipliers which 

significantly restricts the maximum number of synapses 

and neurons that can be implemented on a given device.  

The proposed approach to the area optimised 

multiplier-less spiking neuron cell uses a scheme where 

synaptic multipliers are replaced with pulse density. The 

weight value for each synaptic connection can be 

modified; in this case where learning is considered to be 

off line, the weight values were fixed. A random synapse 

activity can be generated with area efficient logical and 

arithmetic operators. A chain of adders are used in order 

to add incoming synaptic values for the membrane 

potential.  

Random 

weight 

generator

Input 

spikes

Synaptic 

weight

Counter 

value

Comparator

Counter 

comparator

Synaptic weight

1

1

Spike generator

Test circuitry

 

Figure 1.  Synapse architecture 

A novel neuron architecture is proposed where 

multiplication is performed through the use of a two input 

AND gate. As shown in Fig. 1, spikes are generated by a 

spike generator and the total strength of a synapse is 

weighted through a fixed synaptic weight. The weight 

values are converted into a pulse series. In order to 

generate this pulse series, a random number generator and 

comparator is used. The fixed weight values are stored in 

‘synaptic weight’ registers and random values are 

generated through a linear feedback shift register (LFSR). 

The fixed weight values are compared to the random 

values and if the weight is larger than the random 

numbers, the comparator generates a single pulse, and if 

not, no pulse is generated. The random numbers are 
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generated at each time step and therefore, a large weight 

results in many pulses and a small weight results in very 

few pulses (see Fig. 2 and Fig. 3). In other words, the 

weights in this architecture are represented by pulse 

density. The output pulses generated through the synapse 

block are accumulated in the membrane potential. 

The LFSR block introduces randomness in the synapse 

which is one of the important features of neuronal activity 

observed in the cortical neurons. This is very flexible in 

terms of the spike counts where both single or spike 

bursts can be modelled. In these simulations, single 

spikes were counted. The neuron’s membrane is 

modelled with a simple accumulator with 12 bit 

resolution and threshold logic. An output spike is 

generated if the synaptic potential exceeded a threshold 

value and this spike is then transmitted to other neurons 

in the network.  
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Figure 2.  Pulse density in terms of output spikes corresponding to the 
weight value (0.1).  
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Figure 3.  Pulse density increases with an increased weight value (0.4) 
shown with “white arrow” in middle plot. 

The proposed architectures are composed of two sub 

units – a synapse and neuron. The synapse model was 

shown in Fig. 1 and the neuron model is shown in Fig. 4. 

Hardware simulations are shown in Fig. 5. As shown in 

Fig. 4, the synapses are added in the synaptic adder block 

where input spikes coming from other neurons in the 

network are processed through the synapse block and 

added in the synaptic adder block.  

The synaptic efficacy of each spike is accumulated in 

the membrane potential. 

A random noise is also included in the membrane 

potential and the total membrane potential is compared 

with the membrane threshold. An output spike is 

generated if the membrane potential exceeds a certain 

threshold and the membrane potential resets to the reset 

voltage. The simulation results are in very good 

agreement with the theory reported in [6], [21], [22]. 
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Figure 4.  Neuron architecture where incoming spikes are accumulated and a random white noise is added in the membrane. An output spike is 

generated which is connected with other neurons in a network. 

International Journal of Electronics and Electrical Engineering Vol. 3, No. 6, December 2015

©2015 International Journal of Electronics and Electrical Engineering 460



 

 

Figure 5.  Neuron membrane and integration of potential with single 
synapse (membrane threshold = 1, fixed time step = 0.125ms, band 

limited white noise, σ = 0.01).  

Since multipliers are one of the area consuming 

operators therefore considerable amount of logic can be 

saved. There is no straight forward way to quantify 

utilisation of hardware resources for different logic 

blocks because it depends on the precision of the 

arithmetic operators, input bit-widths, synthesis tool 

optimisation, designer’s skills and appropriate design 

flows. In order to analyse the area utilisation of a 

multiplier on a Virtex-II Pro (xc2vp50) FPGA, different 

implementations were performed with multiple bit 

resolutions and bit-widths. 

The breakdown of these implementations is shown in 

Table I. It can be seen that the logic utilisation increases 

with an increased bit resolution and bit-width, however 

there are other factors which also contribute to the area 

utilisation on a target FPGA. In a top down strategy, it is 

very important that an optimised architecture is 

developed. Another limiting factor is the maximum 

number of local and global connection lines available on 

a target FPGA. This can severely limit the routing 

resources and despite the availability of logic, the 

synthesis tool may not be able to fit the design. The 

proposed architectures overcome the burden of synaptic 

multipliers and a significant improvement can be 

achieved in terms of the maximum size of a network that 

can be implemented. 

TABLE I.  AREA UTILISATION OF TWO INPUTS MULTIPLIER WITH 

DIFFERENT BIT-WIDTHS AND BIT RESOLUTIONS 

Two inputs 

(Bit-width) 

Bit resolution Logic utilisation 

Slices LUTs 

2×2 4 8 9 

16 11 14 

28 14 16 

8×8 8 20 35 

20 41 76 

32 50 82 

14×14 9 31 45 

21 106 184 

33 127 225 

The motivation behind this investigation was to map 

extremely compact neural cells in the order to allow large 

numbers of neurons to be fully parallel on a single FPGA 

device. A scalable design strategy is proposed and 

resources are calculated. The overall area of hardware 

resources solely depends on the dynamics involved in the 

model. This architecture is flexible and can easily 

accommodate more precise characteristics of biological 

neurons such as axonal delays. The architecture is 

modified for including axonal delays, where a delay is 

introduced with a chain of registers and selected through 

a multiplexer as shown in Fig. 6. 

Once the neuron has fired, the intermediate register is 

triggered with the reset signal to drop the membrane 

potential to the reset level. The axonal delay can be 

selected through concatenation and multiplexer block 

accordingly. A spike will be transmitted without any 

delay if the input values of a ‘concat’ block are selected 

as ‘00’, and if other values are used such as ‘01’, ‘10’ and 

‘11’ then the spike will be transmitted after multiple 

register delays. The values of register delays can also be 

changed and all other values are reconfigurable and can 

be adjusted accordingly. 
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Figure 6.  Axonal delay architecture 

A Virtex II Pro device xc2vp50 is used for 

implementation and resources are calculated. The device 

has a maximum of 53,136 logic cells or 23,616 slices. In 

a linear comparison, almost 2×10
3
 synapses and 1.2×10

3
 

neurons can be implemented with the proposed 

architecture. By using a state-of-the-art device such as the 

Virtex-5, which has 331,775 logic cells or 51,840 slices, 

it is possible to fit almost 4.3×10
3
 synapses and 2.5×10

3
 

fully parallel neurons at the same time. Maximum 

frequency and logic utilisation strongly depends on the 

network size and numerical precision. These numbers 

(synapses and neurons) are indicative; however the total 

number of neurons that could be implemented on a target 

device depends on the synthesis tool and the architecture 

of a target device. The local and global lines significantly 

affect the routing of the design and after 80% of the 

device utilisation it becomes very hard for the synthesis 

tool to fit logic in a linear scale. 

Logic utilisation for a single synapse and neuron for 

the proposed architecture is shown in Table II and 

resource estimation for different network sizes is shown 

in Table III. As shown in Table III, higher bit resolution 

costs more slices and it is important to keep the balance 

between desired functionality and minimum bit resolution. 

It is also shown that the maximum speed of a design 

depends on the architecture and the size of a network. A 

compact and carefully optimised design will have higher 

speed in comparison to a bigger design where routing 
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delays slow down the maximum speed that can be 

achieved. 

TABLE II.  RESOURCE ESTIMATION FOR ONE NEURON AND ONE 

SYNAPSE (POST PLACE AND ROUTE) 

Synapses Neuron Total Max 
Frequency 

(MHz) 

Embedded 
Multipliers 

Bit 
resolution 

% usage 
(xc2vp50) 

Slices 
Bit 

resolution 

Slices Bit 

resolution 

Slices 

4 6 8 10 16 178 4 6 

TABLE III.  RESOURCE ESTIMATION OF MULTIPLIER-LESS 

IMPLEMENTATION (POST PLACE AND ROUTE) 

Neuron: 

Synapse 

Bit 

Resolution 

N:S 

Slices (XST 

post place 

and route) 

Embedded 

Multipliers 

Frequency 

(MHz) 

1:1 8:4 16 0 178 

1:3 12:10 78 0 94 

1:10 12:12 143 0 94 

 

The proposed architecture is promising in terms of 

logic utilisation and compares well to the existing 

approaches. For example, Upegui, et al. [9] reported that 

without learning, one neuron and a synapse can be 

implemented on a Spartan II sc2s200 device with 23 

slices, and with learning it takes 41 slices. In order to 

observe the scalability of the neuron model, different 

topologies were also investigated. Maya, et al. [12] 

reported that 13 slices are required for a single synapse 

implementation on Virtex XV50-6 and 47 slices for the 

summing module. The maximum operating frequency 

achieved with this design was 90MHz. An XOR problem 

was compiled for the same device with maximum 

frequency of 90MHz and it took 240 slices. Schrauwen, 

et al. [23] implemented spiking neurons with serial 

arithmetic on a Spartan SC3S200 device. It is reported 

that with 12 bit resolution, one synapse model and 10 

inputs can be implemented with a maximum clock speed 

of 120MHz. The total number of neurons that could be 

implemented was limited to 56. In another study, 

Xicotencatl, et al. [24] demonstrated that 1000 synapses 

and 1120 somas (neurons) can be implemented on an 

XCV2000 device with 97% resource utilisation. 

In order to further include the biological characteristics 

of leakage membrane, a modified architecture is proposed 

with the leaky membrane as shown in Fig. 7 where input 

spikes were accumulated and an output spike is generated 

when the membrane potential exceeds a certain threshold. 

The output spike is delayed with the chain of registers 

which models the axonal delay and a reconfigurable 

value can be selected with the select input of the 

multiplexer block. The membrane potential resets to the 

reset value soon after the firing and in the absence of 

input spikes the membrane potential decays exponentially 

towards resting potential. It takes only 58 slices to 

implement one synapse and one LIF neuron with axonal 

delay circuit. Different biological properties can be 

modelled and incorporated in the proposed extended 

architecture including different membrane decays, 

temporal integration, and axonal delays. All parameters 

are programmable such as axonal delay, membrane noise 

and threshold value. These parameters can be adjusted 

accordingly. 

Membrane dynamics play an important role in 

modelling long and short term memory. Different values 

of decay constants determine the duration of memory 

held in network nodes; a larger decay constant means a 

sharp decay, hence a shorter memory. A smaller decay 

constant means a slower decay, hence a longer memory. 

Using the proposed architectures, most of the biological 

properties such as spatio-temporal spike integration, 

firing threshold, resting value and leaky membrane can be 

emulated on reconfigurable hardware. Hardware 

simulations with the leaky membrane are shown in Fig. 8. 
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Figure 7.  Modified architecture with leaky membrane 
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Figure 8.  Three different input spikes accumulation and output spike 
generation 

IV. DISCUSSION/CONCLUSION 

Both IF and LIF models are spiking neuron models. In 

a perfect integrator, the exact timing of spikes is less 

important because the membrane has no leaky effect; 

however, in the LIF model the exact timing of spikes 

does play an important role and a neuron firing time can 

change if presynaptic spikes are received simultaneously. 

The shape of different input spikes is not important and 

contains no information bearing significance. It is the 

time between spike events which is used to convey 

information. 

Spike based models are very well suited for digital 

hardware implementation because of their temporal based 

mechanisms. The use of binary spikes is much more 

convenient and power efficient for synaptic transmission 

mechanism instead of sending numeric signals. The 

advantage of using the proposed design flow and 

reconfigurable hardware architecture is twofold – first it 
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is flexible requiring minimal modifications; different 

parameters can also be changed such as the threshold 

voltage and the synaptic strength. Secondly, different 

dynamics of other biologically plausible models such as 

Spike Response Model and FitzHugh-Nagumo model can 

be incorporated (not discussed in this paper).  

The investigation of the proposed architectures was 

motivated from an engineering perspective as it opens the 

possibility for new reconfigurable hardware architecture 

for large scale SNNs. These architectures lack some of 

the biological details such as ionic flows through neural 

membrane and dynamic synaptic strengths. Synaptic 

strength is a function of many parameters and is not 

constant as modeled in our and other architectures 

reported in the literature.  

In this paper, area-efficient hardware architectures and 

building blocks are presented to model spiking neurons 

and their rich dynamics. Different designs are 

investigated to detail the biological phenomenon such as 

leaky membrane, spatio temporal integration, synapse 

modelling and different axonal delays. Hardware 

resources are calculated and it is argued that utilisation of 

hardware resources are directly proportional to the 

dynamics involved in the model. Less resources will be 

required if abstract models are simulated; a trade-off has 

to be made if neuron models involve rich dynamics. The 

work presented in this paper shows that there is a large 

hardware design space for implementation of spiking 

neural networks that can be explored. The main 

motivation was to investigate an optimised area-efficient 

hardware architecture which could possibly be used as a 

basic cell for large scale network implementations on 

reconfigurable platforms. It is important for any fully 

parallel implementation that the basic cell is optimised if 

objective is to map large scale networks. This architecture 

implies the advantage that the implementation is less 

expensive in comparison with the existing ones and 

preserves the important biological concepts such as 

resting potential, firing threshold, and integration of 

incoming spikes; however it does not emulate biological 

details such as ionic conductance and channels. Since the 

model is simplified therefore lack of representation of 

biological details is being compensated by a simpler 

architecture and hence higher number of neurons. This is 

a reasonable trade-off considering the simplicity of the 

proposed architectures. These architectures provide novel 

advantages such as fully parallel implementation and 

hence no serial dependencies, no need of control circuitry 

because all weights are fixed and there is no need to 

include any delays for reading weight values.  

This paper contributes to elaborate time efficient 

design flow for SNN implementation, area-efficient 

multiplier-less architecture for IF and LIF neurons, area-

efficient implementation of leaky membrane and 

modelling synaptic membrane that could efficiently be 

implemented on reconfigurable platforms.  
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