

Exploiting the Reconfigurability of

Programmable Hardware for Neural Engineering

Arfan Ghani
University of Bolton, Bolton, England, United Kingdom

Email: a.ghani@bolton.ac.uk

Abstract—The use of programmable devices leads to flexible

and area-efficient implementation of biologically plausible

neural entities such as synapses and neurons. However, the

area constraints of reconfigurable devices such as the Field

Programmable Gate Arrays (FPGAs) limit their use to

rather small and already trained neural networks. This

paper investigates and describes area-efficient spiking

neural building blocks to implement integrate-and-fire (IF)

and leaky integrate-and-fire (LIF) neuron models on

reconfigurable hardware. It is demonstrated that an

abstract behaviour of spiking neurons can be emulated for

bit accurate implementation. In a linear comparison, 2×103

synapses and 1.2×103 fully parallel artificial spiking neurons

can be implemented with the proposed building blocks and

architectures. By using bigger devices with more logic

elements such as Virtex-5, it is possible to fit almost 4.3×103

synapses and 2.5×103 neurons. The main contributions of

this paper include area-efficient fully parallel architectures

that exclude the use of embedded multipliers, area-efficient

architecture for a leaky membrane, and compact

implementation of neural cell which can be used for

emulating large scale fully parallel spiking neural networks.

Index Terms—neural engineering, reconfigurable neural

architectures, neuromorphic hardware

I. INTRODUCTION

Inspired by the way the human brain processes

information, scientists have been researching neural

networks (NNs) since the early 1940s [1]. Neural

Networks (NNs) are information processing paradigm

inspired by the way mammalian nervous systems process

information. The key element of this paradigm is the

structure of the information processing system which is

composed of a large number of highly interconnected

processing elements, neurons, working in parallel to solve

a specific problem.

The neuron is made up of four main parts; dendrites,

synapses, axon and the cell body. It is known that a

neuron is essentially a system that accepts electrical

currents which arrive on its dendrites. It sums these and if

they exceed a certain threshold it generates a new pulse

which propagates along an axon. The information is

transmitted from an axon to a dendrite via a synapse by

means of diffusing chemical neurotransmitters across the

synaptic cleft.

Manuscript received April 21, 2014; revised December 10, 2014.

The concept of building biologically plausible

electronic circuits and systems was first pioneered by

Carver Mead in the late 1980s [2]. He named this area

“Neuromorphic Engineering” and the key motivation was

to reverse engineer the properties or information found in

neurobiological systems and develop artificial systems

that, to some extent, mimicked biology. Spiking neural

networks are believed to be the most biologically

plausible and temporal patterns in nerve impulse trains

have been detected biologically in the visual, motor, and

auditory systems [3], [4]. Synchronous spike activity has

been detected in various experiments [1], [5], [6] and

such a wide range of evidence implies that the nervous

system probably does utilise temporal structures and the

exact timing of spikes is likely to play an important role

in biological information processing. The spatio-temporal

nature of bio plausible neural systems is more favourable

for hardware implementation where signals can be

represented in binary form. Different implementation

platforms exist including Application Specific Integrated

Circuits (ASICs), Digital Signal Processors (DSPs) and

the most promising, reconfigurable hardware such as

FPGAs. The question arises as to how efficiently neural

cells could be emulated for large scale implementation.

One of the bottlenecks in neural hardware

implementation is multipliers and weight storage.

Possible solutions to this problem are area-efficient

architectures and multiplier reduction schemes. Spiking

neural networks from neurocomputing perspective are

examined for two main reasons, first to understand and

reproduce the information processing in the brain and

secondly to use the results for computing/engineering

related tasks. The work presented in this paper is focused

on the former aspect. The maximum number of neurons

that can be implemented on reconfigurable hardware is

restricted by the resources available on the target device.

Neural models exhibit extensive use of multiply

operations which consume significant hardware resources.

In spiking neuron model, the output is computed based on

the weighted sum of its inputs. The multiplication

between inputs and weights is the bottleneck for an area-

efficient implementation because multipliers require a lot

of chip area. It is of great importance for large scale

hardware implementation that the number of multipliers

used are reduced, optimised or completely avoided. This

paper investigates area-efficient multiplier-less

architectures which can be used for hardware

International Journal of Electronics and Electrical Engineering Vol. 3, No. 6, December 2015

©2015 International Journal of Electronics and Electrical Engineering 457
doi: 10.12720/ijeee.3.6.457-464

http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6V10-4P961YN-1&_user=126978&_rdoc=1&_fmt=&_orig=search&_sort=d&view=c&_version=1&_urlVersion=0&_userid=126978&md5=637710da40451d93b4ea86c8bc298550#bib44

implementation of spiking neuron models. An appropriate

time-efficient and bit-accurate design flow for spiking

neural network implementation is devised and area-

efficient building blocks for integrate-and-fire (IF) and

leaky integrate-and-fire (LIF) neuron models were

investigated. The contents of this paper are organised as

follows:

Section II discusses neuron models chosen for this

research and Section III details the IF and LIF

reconfigurable architectures and synaptic membrane

modelling. Finally, a discussion of the performance

obtained, limitations, paper findings and possible areas of

improvement are concluded in Section IV.

II. HARDWARE MODELLING OF SPIKING NEURONS

In contrast to classical neural networks, biological

neurons process their information through short pulses,

called spikes. A spike is transmitted through an axon

which connects with other neurons through dendrites.

Ideally, each spike contributes to the membrane potential

by accumulating corresponding post synaptic potential.

Broadly speaking, if an incoming spike leads to an

increase in the membrane potential then it is called an

EPSP (Excitatory Post Synaptic Potential) otherwise it is

called an IPSP (Inhibitory Post Synaptic Potential). Once

the neuron has fired, it resets its membrane potential. This

process continues and all neurons in the network keep

communicating with other neighbouring neurons. The

best known and the most biologically plausible model is

the Hodgkin-Huxley (HH) model [7]. However, there are

other phenomenological and less realistic models which

can demonstrate most of the characteristics presented in

the HH neurons such as Izhikevich, Spike Response

Model (SRM) and IF models. The most biologically

plausible models are not well suited for hardware

implementation as they are expensive in terms of

computational resources. Therefore, other simplified

models such as integrate-and-fire (IF) or leaky integrate-

and-fire (LIF) [5], [6] are more frequently used for

hardware implementations. Software implementations are

useful for investigating the capabilities of different

models and their applicability but they are not adequate

for real time processing or fully parallel large scale

network implementations.

A. Neuron Models

The behaviour of high dimensional models such as HH

is relatively more difficult to analyse, therefore reduction

of the four dimensional equations of the HH model to one

dimensional is highly desirable for efficient

implementation purposes. The neuron models chosen for

this investigation are the IF and LIF. These models are

chosen because of their simplicity, tractability and

biological plausibility in comparison with detailed

compartmental models such as Hodgkin-Huxley. It is

important to have a neural model which is fast, less

complex, fully parallel and numerically accurate. All

integrate-and-fire neurons can be stimulated either by

external input current or the inputs received from

different presynaptic neurons.

Mathematically, the IF model can be expressed as:

𝐼(𝑡) = 𝐶𝑚
𝑑𝑢𝑖

𝑑𝑡
 (1)

where Cm is the membrane capacitance, ui(t) is the

membrane potential, and I(t) is the input current. This

model is less biologically plausible because real neurons

do not respond instantaneously to their input stimuli. The

perfect IF neuron model does not take into account the

leakage current which is a time constant characteristic for

charging and discharging of the membrane potential.

In contrast to the perfect IF, the basic circuit of a LIF

model consists of a resistor in parallel with a capacitor

driven by an external current I(t). According to this

model, total current is divided into two components and 3

described by (2), (3) and (4).

𝐼(𝑡) = 𝐼𝑅 + 𝐼𝐶 (2)

𝐼(𝑡) =
𝑢𝑚(𝑡)

𝑅𝑚
+ 𝐶𝑚

𝑑𝑢𝑚

𝑑𝑡
 (3)

𝜏𝑚
𝑑𝑢𝑚

𝑑𝑡
= −𝑢𝑚 + 𝑅𝑚𝐼(𝑡) (4)

where um is the membrane potential and τm is the

membrane time constant of the neuron. The membrane

potential resets to a ‘reset’ value once the neuron has

fired.

Existing FPGA devices offer cost effectiveness,

capability of large scale implementation, and adequate

speed, hence regarded as the most suitable reconfigurable

digital platforms for modelling neural networks.

Implementing spiking neuron models such as Hodgkin-

Huxley (HH) on digital hardware is not very efficient and

requires a large amount of hardware resources which

exhibit a large latency due to their large number of

integrated variables. It is very important to select a model

which is computationally efficient and biologically

plausible. The integrate-and-fire model is the simplest

spiking neuron model and several hardware architectures

have been proposed in the literature to improve their

implementation efficiency in terms of speed and area.

Existing hardware implementations are mainly

categorised as FPGA and VLSI based implementations.

FPGA based implementations are reported in [8]-[12].

VLSI based implementations are widely covered in [13]-

[15]. Different fully parallel hardware platforms have

been developed for real time parallel simulation of SNNs

and reported in [16], [17]. One of the bottlenecks in

implementing large scale networks on reconfigurable

platforms is the realisation of multipliers. Although,

existing large FPGAs have embedded multipliers, they

are still inadequate in meeting the requirements of large

scale networks. The state of the art FPGAs such as Virtex

5 offers limited DSP48E slices which are still inadequate

to provide enough multipliers. The architectures proposed

in this paper are a continuation of the previous work

published by authors [18] and contribute in overcoming

the problem of a limited number of multipliers available

on a single FPGA device. The main purpose of this study

was to model an optimised spiking neuron cell which

could efficiently be mapped onto reconfigurable

platforms for large scale networks. Neural hardware

International Journal of Electronics and Electrical Engineering Vol. 3, No. 6, December 2015

©2015 International Journal of Electronics and Electrical Engineering 458

implementations on FPGAs are to some extent

unconventional as FPGAs were not originally developed

with this in mind. Therefore it is important to adopt a

design flow which can support the complexity in

translating SNNs onto FPGAs and lead to optimised

area/time-efficient implementations.

Simulink is a well-known tool for high level modelling

and can be interfaced with the Xilinx System Generator

(XSG) toolbox. This can provide an integrated

environment where an algorithm can be tested in

MATLAB and modelled for hardware implementation.

XSG provides a library of hardware blocks that can be

converted into hardware description languages for

synthesis and bit streams can be generated to map onto

target FPGA devices. Blocks with less complexity such

as multiplexers, gates and registers are directly converted

into VHDL while blocks such as multipliers and

memories are supported through Xilinx CORE Generator.

XSG design flow is used for the experiments in this paper

because tool support is available from algorithm

development to the hardware implementation. The

hardware models can be synthesised and implemented on

target FPGAs through the ISE design suite. It is

particularly beneficial because most of the neural

simulators can be used within the MATLAB environment

and their functionality can be verified. The design flow is

time-efficient and a bit and cycle accurate design can be

implemented on reconfigurable platforms.

III. RECONFIGURABLE MULTIPLIERS-LESS

ARCHITECTURES

The proposed hardware architectures are motivated by

the dynamics involved in the cortical spiking neurons.

There are numerous studies about spike activity in

cortical neurons and detailed discussion about them is out

of the scope of this paper, the reader is referred to [19] for

further insight. It has been observed that neurons activity

in the cortex is highly stochastic due to the random

synaptic transmission delays. These delays vary from

synapse to synapse. Both synaptic delays and synaptic

efficacies can be either fixed or variable based on the

network activity. The inclusion of randomness in neural

dynamics is an acceptance to the fact that very little is

known about how neurons in the cortex interact with rest

of the brain and outside world. The whole system might

have considered deterministic if all these been known.

Another possible reason for stochastic behaviour in

neurons may be due to thermal and network noise. This

occurs due to signal transmission and network effects

[19], [20]. Biologists are still trying to find out the exact

mechanisms behind these apparent stochastic behaviours

in cortical neurons which are so reliable and fault tolerant.

Since the cerebral cortex typically contains a very large

number (20 billion) of neurons, the probability of a

neuron failure in the network is high and it may be due to

the distributed nature of neurons that tends to make them

immune to faults. Inspired by these studies, simple and

area efficient multiplier-less architectures were developed

to model some of the characteristics of spiking neurons in

the cortex.

In spike based models such as IF or LIF, neural

operations can be performed with basic logic gates and

streams of input pulses. Multiplication is one of the most

common and critical operations in many computational

systems and is one of the bottlenecks for the

implementation of large scale biologically plausible

neural networks. In hardware, a traditional multiplier unit

is extremely expensive in terms of logic utilisation and

inefficient in terms of power consumption. Low cost

FPGA devices don’t have dedicated multiplier units on

chip while high end FPGA devices have limited numbers

of dedicated multipliers, which are significantly less than

the number of neurons that can be implemented. If a

single synapse with a traditional 8 bit multiplier and 12

bits resolution is to be implemented on a Virtex-II Pro

FPGA (xc2vp50) then almost 26 slices and one

embedded multiplier will be required. Since the total

number of embedded multipliers available on this device

is 232, the maximum number of synapses will be

restricted to the maximum number of embedded

multipliers. In the case of large networks, available logic

has to be utilised for implementing multipliers which

significantly restricts the maximum number of synapses

and neurons that can be implemented on a given device.

The proposed approach to the area optimised

multiplier-less spiking neuron cell uses a scheme where

synaptic multipliers are replaced with pulse density. The

weight value for each synaptic connection can be

modified; in this case where learning is considered to be

off line, the weight values were fixed. A random synapse

activity can be generated with area efficient logical and

arithmetic operators. A chain of adders are used in order

to add incoming synaptic values for the membrane

potential.

Random

weight

generator

Input

spikes

Synaptic

weight

Counter

value

Comparator

Counter

comparator

Synaptic weight

1

1

Spike generator

Test circuitry

Figure 1. Synapse architecture

A novel neuron architecture is proposed where

multiplication is performed through the use of a two input

AND gate. As shown in Fig. 1, spikes are generated by a

spike generator and the total strength of a synapse is

weighted through a fixed synaptic weight. The weight

values are converted into a pulse series. In order to

generate this pulse series, a random number generator and

comparator is used. The fixed weight values are stored in

‘synaptic weight’ registers and random values are

generated through a linear feedback shift register (LFSR).

The fixed weight values are compared to the random

values and if the weight is larger than the random

numbers, the comparator generates a single pulse, and if

not, no pulse is generated. The random numbers are

International Journal of Electronics and Electrical Engineering Vol. 3, No. 6, December 2015

©2015 International Journal of Electronics and Electrical Engineering 459

generated at each time step and therefore, a large weight

results in many pulses and a small weight results in very

few pulses (see Fig. 2 and Fig. 3). In other words, the

weights in this architecture are represented by pulse

density. The output pulses generated through the synapse

block are accumulated in the membrane potential.

The LFSR block introduces randomness in the synapse

which is one of the important features of neuronal activity

observed in the cortical neurons. This is very flexible in

terms of the spike counts where both single or spike

bursts can be modelled. In these simulations, single

spikes were counted. The neuron’s membrane is

modelled with a simple accumulator with 12 bit

resolution and threshold logic. An output spike is

generated if the synaptic potential exceeded a threshold

value and this spike is then transmitted to other neurons

in the network.

Time steps

W
e

ig
h

t
v

a
lu

e
s

Figure 2. Pulse density in terms of output spikes corresponding to the
weight value (0.1).

Time steps

W
e

ig
h

t
v

a
lu

e
s

Figure 3. Pulse density increases with an increased weight value (0.4)
shown with “white arrow” in middle plot.

The proposed architectures are composed of two sub

units – a synapse and neuron. The synapse model was

shown in Fig. 1 and the neuron model is shown in Fig. 4.

Hardware simulations are shown in Fig. 5. As shown in

Fig. 4, the synapses are added in the synaptic adder block

where input spikes coming from other neurons in the

network are processed through the synapse block and

added in the synaptic adder block.

The synaptic efficacy of each spike is accumulated in

the membrane potential.

A random noise is also included in the membrane

potential and the total membrane potential is compared

with the membrane threshold. An output spike is

generated if the membrane potential exceeds a certain

threshold and the membrane potential resets to the reset

voltage. The simulation results are in very good

agreement with the theory reported in [6], [21], [22].

+
Output

>=

Synapse 0

Random weight
generator

Synaptic
weight

Comparator

Counter
comparator

Synaptic weight

1

1

Counter
value

Input spike

Synaptic adder

Noise inclusion and membrane
potential accumulation

+ Accumulator

rst

Membrane threshold
comparator

Membrane

In
p

u
t s

p
ik

e
s

I0

I1

In

Synapse 1

Synapse n
Vth

Figure 4. Neuron architecture where incoming spikes are accumulated and a random white noise is added in the membrane. An output spike is

generated which is connected with other neurons in a network.

International Journal of Electronics and Electrical Engineering Vol. 3, No. 6, December 2015

©2015 International Journal of Electronics and Electrical Engineering 460

Figure 5. Neuron membrane and integration of potential with single
synapse (membrane threshold = 1, fixed time step = 0.125ms, band

limited white noise, σ = 0.01).

Since multipliers are one of the area consuming

operators therefore considerable amount of logic can be

saved. There is no straight forward way to quantify

utilisation of hardware resources for different logic

blocks because it depends on the precision of the

arithmetic operators, input bit-widths, synthesis tool

optimisation, designer’s skills and appropriate design

flows. In order to analyse the area utilisation of a

multiplier on a Virtex-II Pro (xc2vp50) FPGA, different

implementations were performed with multiple bit

resolutions and bit-widths.

The breakdown of these implementations is shown in

Table I. It can be seen that the logic utilisation increases

with an increased bit resolution and bit-width, however

there are other factors which also contribute to the area

utilisation on a target FPGA. In a top down strategy, it is

very important that an optimised architecture is

developed. Another limiting factor is the maximum

number of local and global connection lines available on

a target FPGA. This can severely limit the routing

resources and despite the availability of logic, the

synthesis tool may not be able to fit the design. The

proposed architectures overcome the burden of synaptic

multipliers and a significant improvement can be

achieved in terms of the maximum size of a network that

can be implemented.

TABLE I. AREA UTILISATION OF TWO INPUTS MULTIPLIER WITH

DIFFERENT BIT-WIDTHS AND BIT RESOLUTIONS

Two inputs

(Bit-width)

Bit resolution Logic utilisation

Slices LUTs

2×2 4 8 9

16 11 14

28 14 16

8×8 8 20 35

20 41 76

32 50 82

14×14 9 31 45

21 106 184

33 127 225

The motivation behind this investigation was to map

extremely compact neural cells in the order to allow large

numbers of neurons to be fully parallel on a single FPGA

device. A scalable design strategy is proposed and

resources are calculated. The overall area of hardware

resources solely depends on the dynamics involved in the

model. This architecture is flexible and can easily

accommodate more precise characteristics of biological

neurons such as axonal delays. The architecture is

modified for including axonal delays, where a delay is

introduced with a chain of registers and selected through

a multiplexer as shown in Fig. 6.

Once the neuron has fired, the intermediate register is

triggered with the reset signal to drop the membrane

potential to the reset level. The axonal delay can be

selected through concatenation and multiplexer block

accordingly. A spike will be transmitted without any

delay if the input values of a ‘concat’ block are selected

as ‘00’, and if other values are used such as ‘01’, ‘10’ and

‘11’ then the spike will be transmitted after multiple

register delays. The values of register delays can also be

changed and all other values are reconfigurable and can

be adjusted accordingly.

M
e
m

b
ra

n
e

White noise
Sel Concat

A

B

reg reg reg

Mux

rst

Reg

Output

Axonal delay

S
y
n

a
p

s
e

s

I0

I1

In

>=
Vth

Comparator

Figure 6. Axonal delay architecture

A Virtex II Pro device xc2vp50 is used for

implementation and resources are calculated. The device

has a maximum of 53,136 logic cells or 23,616 slices. In

a linear comparison, almost 2×10
3
 synapses and 1.2×10

3

neurons can be implemented with the proposed

architecture. By using a state-of-the-art device such as the

Virtex-5, which has 331,775 logic cells or 51,840 slices,

it is possible to fit almost 4.3×10
3
 synapses and 2.5×10

3

fully parallel neurons at the same time. Maximum

frequency and logic utilisation strongly depends on the

network size and numerical precision. These numbers

(synapses and neurons) are indicative; however the total

number of neurons that could be implemented on a target

device depends on the synthesis tool and the architecture

of a target device. The local and global lines significantly

affect the routing of the design and after 80% of the

device utilisation it becomes very hard for the synthesis

tool to fit logic in a linear scale.

Logic utilisation for a single synapse and neuron for

the proposed architecture is shown in Table II and

resource estimation for different network sizes is shown

in Table III. As shown in Table III, higher bit resolution

costs more slices and it is important to keep the balance

between desired functionality and minimum bit resolution.

It is also shown that the maximum speed of a design

depends on the architecture and the size of a network. A

compact and carefully optimised design will have higher

speed in comparison to a bigger design where routing

Time steps

M
e

m
b

ra
n

e
 p

o
te

n
ti

a
l

International Journal of Electronics and Electrical Engineering Vol. 3, No. 6, December 2015

©2015 International Journal of Electronics and Electrical Engineering 461

delays slow down the maximum speed that can be

achieved.

TABLE II. RESOURCE ESTIMATION FOR ONE NEURON AND ONE

SYNAPSE (POST PLACE AND ROUTE)

Synapses Neuron Total Max
Frequency

(MHz)

Embedded
Multipliers

Bit
resolution

% usage
(xc2vp50)

Slices
Bit

resolution

Slices Bit

resolution

Slices

4 6 8 10 16 178 4 6

TABLE III. RESOURCE ESTIMATION OF MULTIPLIER-LESS

IMPLEMENTATION (POST PLACE AND ROUTE)

Neuron:

Synapse

Bit

Resolution

N:S

Slices (XST

post place

and route)

Embedded

Multipliers

Frequency

(MHz)

1:1 8:4 16 0 178

1:3 12:10 78 0 94

1:10 12:12 143 0 94

The proposed architecture is promising in terms of

logic utilisation and compares well to the existing

approaches. For example, Upegui, et al. [9] reported that

without learning, one neuron and a synapse can be

implemented on a Spartan II sc2s200 device with 23

slices, and with learning it takes 41 slices. In order to

observe the scalability of the neuron model, different

topologies were also investigated. Maya, et al. [12]

reported that 13 slices are required for a single synapse

implementation on Virtex XV50-6 and 47 slices for the

summing module. The maximum operating frequency

achieved with this design was 90MHz. An XOR problem

was compiled for the same device with maximum

frequency of 90MHz and it took 240 slices. Schrauwen,

et al. [23] implemented spiking neurons with serial

arithmetic on a Spartan SC3S200 device. It is reported

that with 12 bit resolution, one synapse model and 10

inputs can be implemented with a maximum clock speed

of 120MHz. The total number of neurons that could be

implemented was limited to 56. In another study,

Xicotencatl, et al. [24] demonstrated that 1000 synapses

and 1120 somas (neurons) can be implemented on an

XCV2000 device with 97% resource utilisation.

In order to further include the biological characteristics

of leakage membrane, a modified architecture is proposed

with the leaky membrane as shown in Fig. 7 where input

spikes were accumulated and an output spike is generated

when the membrane potential exceeds a certain threshold.

The output spike is delayed with the chain of registers

which models the axonal delay and a reconfigurable

value can be selected with the select input of the

multiplexer block. The membrane potential resets to the

reset value soon after the firing and in the absence of

input spikes the membrane potential decays exponentially

towards resting potential. It takes only 58 slices to

implement one synapse and one LIF neuron with axonal

delay circuit. Different biological properties can be

modelled and incorporated in the proposed extended

architecture including different membrane decays,

temporal integration, and axonal delays. All parameters

are programmable such as axonal delay, membrane noise

and threshold value. These parameters can be adjusted

accordingly.

Membrane dynamics play an important role in

modelling long and short term memory. Different values

of decay constants determine the duration of memory

held in network nodes; a larger decay constant means a

sharp decay, hence a shorter memory. A smaller decay

constant means a slower decay, hence a longer memory.

Using the proposed architectures, most of the biological

properties such as spatio-temporal spike integration,

firing threshold, resting value and leaky membrane can be

emulated on reconfigurable hardware. Hardware

simulations with the leaky membrane are shown in Fig. 8.

s
y

n
a
p

s
e
s

M
e
m

b
ra

n
e

White noise
Sel

reg reg reg

Mux
Concat

A

B

>=
Vth

Comparator

Reg

rst

Output

Synapses Soma Axonal delay

I0

I1

In

Figure 7. Modified architecture with leaky membrane

M
e

m
b

ra
n

e
p

o
te

n
ti

al

Reset

voltage

Threshold

Time steps

Figure 8. Three different input spikes accumulation and output spike
generation

IV. DISCUSSION/CONCLUSION

Both IF and LIF models are spiking neuron models. In

a perfect integrator, the exact timing of spikes is less

important because the membrane has no leaky effect;

however, in the LIF model the exact timing of spikes

does play an important role and a neuron firing time can

change if presynaptic spikes are received simultaneously.

The shape of different input spikes is not important and

contains no information bearing significance. It is the

time between spike events which is used to convey

information.

Spike based models are very well suited for digital

hardware implementation because of their temporal based

mechanisms. The use of binary spikes is much more

convenient and power efficient for synaptic transmission

mechanism instead of sending numeric signals. The

advantage of using the proposed design flow and

reconfigurable hardware architecture is twofold – first it

International Journal of Electronics and Electrical Engineering Vol. 3, No. 6, December 2015

©2015 International Journal of Electronics and Electrical Engineering 462

is flexible requiring minimal modifications; different

parameters can also be changed such as the threshold

voltage and the synaptic strength. Secondly, different

dynamics of other biologically plausible models such as

Spike Response Model and FitzHugh-Nagumo model can

be incorporated (not discussed in this paper).

The investigation of the proposed architectures was

motivated from an engineering perspective as it opens the

possibility for new reconfigurable hardware architecture

for large scale SNNs. These architectures lack some of

the biological details such as ionic flows through neural

membrane and dynamic synaptic strengths. Synaptic

strength is a function of many parameters and is not

constant as modeled in our and other architectures

reported in the literature.

In this paper, area-efficient hardware architectures and

building blocks are presented to model spiking neurons

and their rich dynamics. Different designs are

investigated to detail the biological phenomenon such as

leaky membrane, spatio temporal integration, synapse

modelling and different axonal delays. Hardware

resources are calculated and it is argued that utilisation of

hardware resources are directly proportional to the

dynamics involved in the model. Less resources will be

required if abstract models are simulated; a trade-off has

to be made if neuron models involve rich dynamics. The

work presented in this paper shows that there is a large

hardware design space for implementation of spiking

neural networks that can be explored. The main

motivation was to investigate an optimised area-efficient

hardware architecture which could possibly be used as a

basic cell for large scale network implementations on

reconfigurable platforms. It is important for any fully

parallel implementation that the basic cell is optimised if

objective is to map large scale networks. This architecture

implies the advantage that the implementation is less

expensive in comparison with the existing ones and

preserves the important biological concepts such as

resting potential, firing threshold, and integration of

incoming spikes; however it does not emulate biological

details such as ionic conductance and channels. Since the

model is simplified therefore lack of representation of

biological details is being compensated by a simpler

architecture and hence higher number of neurons. This is

a reasonable trade-off considering the simplicity of the

proposed architectures. These architectures provide novel

advantages such as fully parallel implementation and

hence no serial dependencies, no need of control circuitry

because all weights are fixed and there is no need to

include any delays for reading weight values.

This paper contributes to elaborate time efficient

design flow for SNN implementation, area-efficient

multiplier-less architecture for IF and LIF neurons, area-

efficient implementation of leaky membrane and

modelling synaptic membrane that could efficiently be

implemented on reconfigurable platforms.

ACKNOWLEDGMENT

The author would like to thank the research grant from

the University of Ulster, UK.

REFERENCES

[1] W. S. McCulloch and W. Pitts, “A logical calculus of the ideas

immanent in nervous activity,” Bulletin of Math. Biophysics, vol. 5,

pp. 115-133, 1943.
[2] C. A. Mead, Analog VLSI and Neural Systems, Boston, MA:

Addison-Wesley Longman Publishing Co., Inc., 1989.
[3] R. D. Frostig, Z. Frostig, and R. M. Harper, “Recurring discharge

patterns in multiple spike trains,” Biological Cybernetics, vol. 62,

pp. 487-493, 1990.

[4] G. L. Gerstein, A. M. Andi, and H. J. Aertsen, “Representation of

cooperative firing activity among simultaneously recorded

neurons,” Neurophysiology, vol. 54, no. 6, pp. 1513-1528, 1985.
[5] W. Maass and C. Bishop, Pulsed Neural Networks, Massachusetts:

The MIT Press, 1999.
[6] W. Maass, “Networks of spiking neurons: The third generation of

neural network models,” Neural Networks, vol. 10, no. 9, pp.

1659-1671, 1997.

[7] A. L. Hodgkin and A. F. Huxley, “A quantitative description of

membrane current and its application to conduction and excitation

in nerve,” Journal of Physiology-London, vol. 117, no. 4, pp. 500-

544, 1952.
[8] H. Hellmich, et al., “Emulation engine for spiking neurons and

adaptive synaptic weights,” in Proc. IJCNN, 2005, pp. 3261-3266.
[9] A. Upegui, C. A. Pena-Reyes, and E. Sanchez, “An FPGA

platform for on-line topology exploration of spiking neural
networks,” Microprocessors and Microsystems, vol. 29, pp. 211-

223, 2005.

[10] D. Roggen, S. Hofmann, Y. Thoma, and D. Floreano, “Hardware

spiking neural network with run-time reconfigurable connectivity

in an autonomous robot,” in Proc. NASA/DoD Conference on

Evolvable Hardware, 2003.
[11] M. Oster, A. M. Whatley, S. C. Liu, and R. J. Douglas, “A

hardware/software framework for real-time spiking systems,” in

Proc. ICANN, 2005, pp. 161-166.

[12] S. Maya, R. Reynoso, C. Torres, and M. Arias-Estrada, “Compact

spiking neural network implementation in FPGA,” in Proc. 10th

International Conference
[13] S. Mitra, S. Fusi, and G. Indiveri, “A VLSI spike-driven dynamic

synapse which learns only when necessary,” in Proc. ISCAS, 2006,

pp. 1-4.
[14] E. Chicca, et al., “A VLSI recurrent network of integrate-and-fire

neurons connected by plastic synapses with long term memory,”

Neural Networks, vol. 14, no. 5, pp. 1409-1416, 2003.

[15] G. Indiveri, E. Chicca, and R. Douglas, “A VLSI array of low-

power spiking neurons and bistable synapses with spike-timing

dependent plasticity,” IEEE Transactions on Neural Networks, vol.

17, no. 1, pp. 211-221, 2006.
[16] G. Hartmann, G. Frank, M. Schaefer, and C. Wolff, “SPIKE128K

- An accelerator for dynamic simulation of large pulse-coded
networks,” in Proc. MicroNeuro, 1997, pp. 130-139

[17] A. Jahnke, U. Roth, and H. Klar, “A SIMD/dataflow architecture

for a neurocomputer for spike-processing neural networks

(NESPINN),” in Proc. MicroNeuro, 1996, pp. 232-237

[18] A. Ghani, T. M. McGinnity, L. P. Maguire, and J. G. Harkin,

“Area efficient architecture for large scale implementation of

biologically plausible spiking neural networks on reconfigurable

hardware,” in Proc. FPL, 2006, pp. 1-2.
[19] W. Gerstner and W. Kistler, Spiking Neuron Models - Single

Neurons, Populations, Plasticity, UK: Cambridge University Press,

2002.

[20] C. Koch, Biophysics of Computation: Information Processing in
Single Neurons, New York: Oxford Univ. Press, 1999.

[21] D. J. Amit and N. Brunel, “Dynamics of a recurrent network of

spiking neurons before and following learning,” Network:
Computational Neural Systems, vol. 8, pp. 373-404, 1997.

[22] G. Silberberg, A. Gupta, and H. Markram, “Stereotypy in

neocortical microcircuits,” Trends in Neuroscience, vol. 25, no. 5,
pp. 227-230, 2002.

[23] B. Schrauwen and J. V. Campenhout, “Parallel hardware

implementation of a broad class of spiking neurons using serial
arithmetic,” in Proc. ESANN, 2006, pp. 623-628.

[24] J. M. Xicotencatl and M. Arias-Estrada, “FPGA based high

density spiking neural network array,” in Proc. 13th International
Conference, FPL, 2003, pp. 1053-1056.

International Journal of Electronics and Electrical Engineering Vol. 3, No. 6, December 2015

©2015 International Journal of Electronics and Electrical Engineering 463

, FPL , 2000, pp. 270-276.

Dr. Arfan Ghani is a Lecturer in Electrical and Electronic Engineering
with specialisation in Biomedical Engineering at the University of

Bolton, Greater Manchester, UK. He got BEng degree in Electronics

with Distinction from NED University of Engineering and Technology,
Karachi, Pakistan, M.Sc. Computer Systems Engineering (VLSI System

Design) from the Technical University of Denmark, Copenhagen and

Ph.D. in Neural Engineering from University of Ulster, N. Ireland, UK.
He has several years' of academic and industrial R&D experience and

have worked with University of Ulster, University of Liverpool,

Newcastle University, Intel Research Cambridge, Vitesse
Semiconductors, Denmark and Siemens Pakistan. His research interests

include computational neuroscience, bio-inspired electronic systems,

neuromorphic hardware (ASIC/FPGA), implantable prosthetic devices,
low-power design, biomedical imaging and systems-on-chip design.

The overlying goal of his research is to learn from biology to create

more efficient electronic systems and develop technologies for medicine
and healthcare.

International Journal of Electronics and Electrical Engineering Vol. 3, No. 6, December 2015

©2015 International Journal of Electronics and Electrical Engineering 464

