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Abstract—Accuracy in theoretical prediction of performance 

of transformers has become increasingly important to effect 

economy in design and to ensure reliability of operation. 

Some of the performance indicators that the power system 

engineers are concerned with are reactance, electromagnetic 

forces, short circuit impedance etc.  In recent years, finite 

element methods have been increasingly used. One of the 

drawbacks in the flux plots so obtained is that at all infinitely 

permeable iron surface the flux lines are not normal to the 

iron surface. To eliminate these errors on the boundaries 

special finite elements i.e. incremental curved elements with 

linear and cubic variations have been developed. Their 

incorporation would modify the usual shape functions. With 

the help of modified shape functions the magnetic vector 

potentials are solved. Leakage reactance, the magnetic force, 

energy is calculated and flux plots obtained. 

 

Index Terms—transformer, power system computing finite 

element method flux plots 
 

I.  INTRODUCTION 

Since one of the important features of a transformer is its 

leakage impedance, improvements in the calculations of 

this quantity are always searched for. [1]-[3] Analytical 

methods have been employed in the past for determining 

the actual flux distribution but most of the analytical 

methods are not accurate [4], [5]. The drawback of these 

representations is either the simplified assumptions or the 

complex nature, which makes the use of it impracticable. 

Rabin [6] has also presented a solution using Fourier series 

representations of the ampere-turns distribution, in axial 

directions only. In the transition region between the two 

windings, there is an abrupt change in the ampere-turns 

distribution, and it is difficult to represent this by Fourier 

series accurately.  Numerical modeling techniques are 

now-a-days well established for transformer analysis and 

enable representation of all important features of these 

devices [7]-[9]. In the application of finite element 

methods for axi- symmetric problems, only the first order 

and high order triangular elements have been used [10], 

[11] and flux plots obtained. One of the drawbacks in the 

flux plots so obtained is that at all infinitely permeable iron 
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surface the flux lines are not normal to the iron surface, i.e. 

Neumann’s boundary condition is not satisfied as it 

constitutes the natural functional. To eliminate these errors 

on the boundaries special finite elements i.e. incremental 

curved elements with linear and cubic variations have been 

developed. 

II.   TRANSFORMER MODELING WITH FINITE ELEMENT 

METHOD 

Mathematical formulation: For the purpose of 

analysis, the transformer will be assumed rotationally 

symmetric about a core leg. It will be assumed that all iron 

is infinitely permeable. In the insulation and winding space 

the magnetic vector potential must satisfy the vector 

Poisson’s equation. The Poisson’s equation in cylindrical 

coordinates for axi-symmetric problems can be written as: 

 rv
v J

r r r z z

   
 

   
                    (1) 

Subject to the boundary conditions:   is specified on 

the part of the boundary S1 and ∂ /∂n on the part of the 

boundary S2 

In the present formulation the given region is divided 

into a mesh of finite elements, and the vector potential   

is approximated in each element. The mesh is a set of rings, 

each ring having a general curvilinear quadrilateral 

cross-section that has been revolved around the z-axis. The 

current density, J is assumed to be directed in the 

peripheral direction, and thus the vector potential,   is 

also peripherally directed. Within each element the vector 

potential   is assumed to vary according to the equation: 

i i
N                                  (2) 

where Ni is the usual shape functions [10] and i  is the 

nodal values of vector potentials. 

III. FORMULATION OF INCREMENTAL ELEMENTS 

Fig. 1 (a) and Fig. 1(b) shows para- linear  and  parabolic 

incremental elements respectively where EF is the 

boundary on which the condition / ( , )n x y     holds. 
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One side of the element, represented by the nodes 4, 5 and 

6 is lying on the boundary EF. The opposite side, having 

nodes 1, 2 and 3 on it, is lying on the boundary line GH, 

which is very close to the boundary line EF. The variations 

in the η and ξ directions are linear and parabolic 

respectively. 

 

Figure 1.  (a) Para-Linear incremental element (b) parabolic incremental 

element 

Higher or lower variation in ξ direction is possible. Thus 

basically an incremental element is either a linear-linear, 

para-linear or a cubi- linear element. The shape functions 

for the curved para-linear element can be written as: 

1 1 1
N n , 

2 2 1
N n , 

3 3 1
N n , 

4 3 2
N n , 

5 2 2
N n , 

6 1 2
N n                          (3) 

where   1
0.5 1n    ,  2

2
1n   ,   3

0.5 1n    , 

 1 0.5 1   , and  
2

0.5 1    

Assuming, 

341   , 252    and 163    

The usual nodal potential values,  e
  and the 

incremental nodal potentials,  e

 are related by: 

    ee
C                                 (4) 
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Matrix [C] is the required connection matrix. The 

element in terms of the incremental nodal potentials is 

represented in Fig. 1(b). The potential at any point in 

para-linear element is given by: 

    e
N    

This expression can be modified, with the help of Eq.(4) 

to connect the potential,  , with the incremental 

parameters. Thus: 

   
e

N C   

 
e

N   
                               (5) 

where   N N C    =  1 6 2 5 3 4 4 5 6
, , , , ,N N N N N N N N N    

Let: 
' ' '

1 2 3 4 5 6
, , , , , ,N N N N N N N                   (6) 

where 
'

1
N , 

'

2
N , and 

'

3
N  are the new shape functions at 

nodes 1, 2 and 3 respectively, and can be shown to be equal 

to: 

1

'

1 nN  , 2

'

2 nN  , 3

'

3 nN                   (7) 

For the calculation of gradient matrix the Jacobin matrix 

and its determinant and the original shape functions of the 

para- linear element as given by (3) are required. Thus the 

modified shape functions, (6) and the original shape 

functions, (3) will have to be stored. An alternative 

approach is to calculate the Jacobian matrix and its 

determinant by using the modified shape functions. For this 

the coordinates of the nodes will have to be modified, since 

it is convenient to modify the coordinates of the nodes 

instead of retaining the original shape functions. This latter 

approach is used here. Using the modified shape functions 

the x and y coordinates can be written as: 

  
ee

x N x N x     
   

 

  
ee

y N y N y     
                       (8)

 

where: 

   
1e e

x C x


 
   1 2 3 1 2 3

, , , , , ,x x x x x x     

   
1e e

y C y


 
   1 2 3 1 2 3

, , , , , ,y y y y y y     

and 
1 4 3

,x x x    
2 5 2

,x x x    
3 6 1

,x x x   and 

so on. x 
   and y 

   are the modified coordinates of the 

element. Only the coordinates of the nodes lying on the 

boundary EF needs modifications. With the modified 

shape functions and coordinates the procedure of 

calculating the element properties by numerical integration 

will remain unaltered. The elements fulfill the necessary 

conditions of convergence. The compatibility conditions 

are also satisfied. The incremental elements must satisfy 

the Neumann type of boundary condition ∂ /∂n = α (x, y). 

For this purpose α will appear in the final potential vector 

of the global equations as the known values of the nodal 

potentials for the nodes on the boundary EF. Using 

modified shape functions reluctance matrix, [R] and 

current load vector {I} is carried out numerically. 
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IV. REACTANCE CALCULATION 

The leakage reactance can be calculated as pointed out 

by Anderson [11] and Silvester [12], by calculating the 

stored energy in the leakage field. The leakage reactance X, 

using the stored energy W, is given by: 
2

2 /X W I  

where: 

0.5 .
v

W J dv                             (9) 

ω is supply frequency, and I is the current peak or effective, 

for which the energy W was evaluated. For the 

axi-symmetric problems, the radial and axial components 

of the short circuit electromagnetic  force can be written as: 

r z

v
z r

F B
J dv

F B




   
   
   

                      (10) 

where Bz and Br are the flux densities in axial and radial 

directions respectively.  

TABLE I. COMPUTED VALUE OF LEAKAGE REACTANCE  

 

V. SAMPLE PROBLEM 

Andersen [10] and Silvester [11] have used the Rabins 

case 2 to illustrate their finite element analysis. This case is 

taken to illustrate the various aspects of the present finite 

element analysis. In the analysis numerically integrated 

general quadrilateral iso-parametric elements with or 

without curved sides have been used. Transformer leakage 

field analysis is dealt in the present discussion. 

The element having linear, parabolic and cubic 

interpolation functions and belonging to serendipity family 

have been used. These elements are shown in Fig. 1(a) and 

(b). For comparison, the solution domain was divided into 

elements so that the total number of nodes are 

approximately same for various type of elements. The 

results obtained for approximately 100 nodes and 180 

nodes are tabulated in Table I. 

The agreement with the tested result for reactance is 

very good. The flux plots for 180 nodes case are shown in 

Fig. 3. The agreement with Anderson [10] and Silvester 

[11] is good. The flux plots for 100 nodes case are similar. 

When the number of integrating points for linear, parabolic 

and cubic elements are 4, 9 and 16 respectively, the present 

study indicates an approximate time ratio 1:5:15 for the 

formation of reluctance matrix of an element and a total 

problem time ratio 3:4:7, on the basis of equal number of 

nodes for an analysis by linear, parabolic and cubic 

elements. However, if the numbers of integrating points in 

each parabolic element are chosen to be 4, then a time 

saving of approximately 30% in the formation of 

reluctance matrix, is achieved and the total problem time is 

of the same order as for linear elements for a problem 

having same number of nodes. 

 
Figure 2.  Leakage field of the transformer using linear and cubic 

elements 

Sr. No. No. of Nodes Elements Type No. of Elements Reactance p.u. 
No. of integrating points per 

Element 

1. 100 L. Q. 81 0.56046 4 

2. 96 P. Q. 25 0.58683 9 

3. 100 C. Q. 15 0.58620 16 

4. 180 L. Q. 154 0.56815 4 

5. 176 P. Q. 49 0.59315 9 

6. 184 C. Q. 30 0.59220 16 

7. 96 P. Q. 25 0.59167 4 

8. 176 P. Q. 49 0.59380 4 

9. 96 P. Q. 25 0.57480 9 

 44* P. Q. 20  4 

10. 96 P. Q. 25 0.57668 4 

 44* P. Q. 20  4 

(* Incremental) 

Tested value of reactance = 0.5870 p.u. 

Rabin's calculated value = 0.5829 p.u. 

Anderson's calculated value using 3496 first order triangular elements 1833 nodes = 0.5886 p.u. 
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Figure. 3.  Leakage field of the transformer using parabolic elements 

The problem was also analyzed by the use of 

incremental elements. The 96 Node, 25 parabolic elements 

Fig. 2 and Fig. 3, mesh was used by applying the 

incremental elements around it. The efficiency and 

computational effort are of the same order as that when no 

incremental elements are used. The use of incremental 

elements has given a reactance value, hence the stored 

energy is also slightly less than the tested value. This is due 

to the fact that the incremental elements allow the flux 

density variation in only one direction and this effect is also 

carried to some extent to the normal element on the side of 

which the incremental element is attached. 

In case of normal elements the solution has been 

possible by assuming a known potential at one point in the 

domain. In present work zero potential is assumed at lower 

left corner. No such assumption is necessary, when field is 

analyzed with the help of incremental elements 

VI. CONCLUSION 

The use of incremental numerically integrated higher 

order isoparametric elements offers many significant 

advantages. These are easy to use, boundary conditions 

and curvatures are properly accounted for; they yield fast 

and reliable solutions. On the basis of improved accuracy, 

and computational efforts required to solve a given 

problem and ease in input data preparation, the parabolic 

elements are preferred for routine work. In addition, total 

computation time of the order of linear elements is 

obtained if parabolic elements with four integrating points 

are used. The use of cubic elements is recommended only 

in cases where flux concentration is high and the geometry 

permits the use of only few elements. 
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