
SMaRT: Small Machine for Research and

Teaching

Nozar Tabrizi
Department of Electrical and Computer Engineering, Kettering University, Flint, USA

Email: ntabrizi@kettering.edu

Abstract—We introduce SMaRT, a 16-bit single-cycle

RISC-type processor with 16-bit-wide instructions. SMaRT

features the novel concept of 2.5-address instructions to

avoid the data loss that inherently exists in 2-address

processors. Additionally, SMaRT’s short-branch

instructions take advantage of the temporal locality of

reference in accessing the upper or lower halves of the

CPU’s 16x16 orthogonal register file. This allows SMaRT to

significantly extend the range of the short-branch

instructions. We show that these novelties are achieved at

almost no performance cost and negligible hardware cost.

SMaRT has four operation modes, namely Single-Step, to

execute one instruction at a time, Manual, to display and

inspect individual locations of data memory, Run, to run the

whole code nonstop, and Init, to copy a read-only memory

to the data memory for initialization purposes. We also

implement and present an input/output port and a sorting

coprocessor, and then hook it up to SMaRT through the

port as an example. We have successfully synthesized the

combined SMaRT and the sorting coprocessor into the

Altera Cyclone II FPGA chip, and tested them.

Index Terms—2.5-address processors, FPGA synthesis,

microcontrollers, microprocessors, RISC, single-cycle CPUs,

temporal locality

I. INTRODUCTION

Sixteen-bit microcontrollers are manufactured by

different semiconductor companies and used in a verity

of embedded systems in different areas such as office

equipment, power tools, toys, medical/healthcare industry,

remote controls, automotive industry and appliances [1].

Freescale, recently combined with NXP and called NXP,

manufactures the S12XE family of 16-bit automotive and

industrial microcontrollers. NXP is a global

semiconductor company specializing in embedded

technologies. For detailed information on a full range of

the NXP 16-bit microcontrollers such as the HCS12 see

[2]. The Microchip PIC24 MCUs and dsPIC® DSCs [3]

and the Texas Instruments MSP430 [4] are also widely

used families of modern 16-bit processors. Microchip

Technology Inc. and Texas Instruments are leading

providers of microcontrollers and analog semiconductors.

Sixteen-bit microcontrollers are also commonly used

in academia. Numerous textbooks, such as [5]-[8], are on

the market focusing on this size microcomputers. There

Manuscript received February 22, 2016; revised June 3, 2016.

are also 16-bit microcontroller-based training boards on

the market such as the HCS12-based Dragon12Plus [9],

and the PIC24-based Explorer 16 [10]. We have been

using the Dragon12Plus education board and an HCS12-

based textbook [6] for a Microcomputers course in our

ECE department for many years.

Although the PIC24 family of Microchip

microcontrollers uses a 16-bit datapath with same-size

instructions, its instructions are 24 (not 16) bits wide.

Additionally, this family is not a load/store machine

unlike the PIC32 family of microcontrollers [11].

The 16-bit microcontrollers from NXP are built on

CISC-type processors. Since there is almost no restriction

on the instruction length, number of addressing modes or

instruction types in this class of processors, their

programmer’s model is rich and flexible but complex;

this is why their time to market is usually long.

Researchers as well as the market have given significant

attention to RISC-type architectures since the early 1980s.

One of the pioneering works on modern RISC was

reported in [12]. The RISC-type ARM family of

processors, which has taken over the mobile-device

market, reached the 50-billion-chip milestone in 2014

[13].

The Texas Instruments MSP430 family is not a

load/store machine although it enjoys a reduced

instruction set. This is why the MSP430 User's Guide

calls it a RISC architecture [4]. Besides, it is a multi-

cycle- multi-length-instruction processor. On the other

hand, 4 out of 16 registers in the register file of this

family of microcontrollers are special-purpose.

Additionally, the arithmetic and logical instructions are

two-address instructions, and therefore the second

operand will be overwritten, hence lost.

The rest of the paper is organized as follows: In

Section II some related work is reviewed and compared

with SMaRT. Section III describes SMaRT instruction set.

The performance and hardware costs due to the SMaRT

novelties are discussed in Section IV. SMaRT operation

modes are explained in Section V. You read about a

sorting coprocessor and the way it is hooked up to

SMaRT in Section VI followed by an example in Section

VII. The conclusion is in Section VIII.

II. BACKGROUND WORK

Yang et al. propose a 16-bit Thumb instruction set

microprocessor in [14]. The Thumb mode is

International Journal of Electronics and Electrical Engineering Vol. 5, No. 1, February 2017

©2017 Int. J. Electron. Electr. Eng. 51
doi: 10.18178/ijeee.5.1.51-58

unfortunately not orthogonal; e.g., the Format 2 add/sub

does not work on Hi register file. The ALU instructions

(Format 4) only operate on Lo register pairs. Additionally,

they are 2-address instructions. The Format-5 add

instruction is also a 2-address one and cannot operate on

a pair of Lo registers. A gate-array-based 16-bit

microprocessor using an ASM controller is reported in

[15], where the instructions operate on only two operand

registers A and B. xQ16v3, a FPGA-based 16-bit 2-stage

pipelined microprocessor, is introduced in [16], but again

it is a 2-address machine. SAVAGE16, a 16-bit pipelined

microprocessor is developed in [17]; however, its

instructions are 32 bits wide. This processor has been

used in some university projects. In [18] Sakthikumaran

et al. develop a 16-bit single-cycle RISC processor for

signal processing applications. They use a low-power

incrementor for the PC and a high-speed/low-power

modified Wallace tree multiplier in the ALU. The register

file, however, consists of 8 general-purpose registers. In

their MMP16 project [19], Presa et al. introduce a

complete learning tool based on a 2-stage 16-bit pipelined

and micro-programmed microprocessor. Although

MMP16 enjoys a reduced instruction set, it is not a RISC

CPU. 4, 8, 12 or 16-bit-wide OpCodes are used in

different instructions of MMP16.

In addition to being a research topic, 16-bit

microcontrollers are also used by researchers. Tang et al.

use the Microchip PIC18F4520 to design an embedded

controller for a portable fuel cell [20]. A 16-bit dsPIC is

used in [21] for motion control of a mobile robot.

SMaRT enjoys separate data bus and address bus as

well. However, each bus is only 16 (not 32) bits wide, as

smaller is faster! SMaRT is a memory-mapped I/O

machine with an address space of up to 64 K. See

SMaRT datapath in Fig. 1.

SMaRT instructions are single cycle and 16 bits wide

with one exception: the branch and link instructions each

are 2 words wide and also 2 clock cycles long. The 16x16

register file of SMaRT is orthogonal with one exception:

register 1 (R1) is the return address register as explained

shortly; otherwise it can be used as a general-purpose

register.

In 16-bit-instruction RISC machines with 16 general-

purpose registers, it is a challenge to avoid the data loss

due to 2-address instructions. To address this

shortcoming, we introduce the concept of the so-called

2.5-address machine: SMaRT programmers may specify

the register located right after the first operand register as

the destination register. For example, the following

instruction will add R5 to R2 and place the result in R3,

so R2 is not lost anymore:

add+R2, R5

Figure 1. SMaRT datapath

International Journal of Electronics and Electrical Engineering Vol. 5, No. 1, February 2017

©2017 Int. J. Electron. Electr. Eng. 52

III.

SMART

INSTRUCTION SET ARCHITECTURE

There are four different instruction formats in this

machine as shown in Fig. 2, namely R-type, LSI-type, B-

type and BL-type. Each SMaRT instruction is 16 bits

wide (same as the data-bus width) with an exception of

baleq and balne to be discussed in this section. The

OpCode is always 3 bits wide and occupies bits 12

through 14 of each instruction.

Figure 2. SMaRT instruction formats

A. R-Type Instructions

All the instructions in this category have the same

OpCode; the Function field distinguishes between the R-

type instructions. In the current (first) version of SMaRT,

the following operations are supported: add, sub, and, or,

nand, nor, slt. The specified operation is carried out on

registers Rs and Rd, and the result goes to register Rd if

cdr (MSB of instruction) = 0. See R-type in Fig. 2.

The set less than instruction (slt) compares Rs and Rd,

and sets the destination register to 1 if Rs < Rd; otherwise

to 0.

Example: slt R3, R6; which means R3 <= 1 if R6 <

R3, else 0.

Example: sub R3, R6; which means R3 <= R6 – R3.

This, however, may result in a major shortcoming: one

of the operand registers, R3 in the above two examples, is

overwritten hence lost, which is not something that we

like to happen if the overwritten register is going to be

used later. We may resolve this issue by adding one more

instruction, i.e. spending more time and power, to save

the problematic register. Adding one instruction,

however, is not an option in this work; we are looking

for a less expensive solution to resolve the issue.

A common technique used by processor designers to

avoid the data loss is to use 3-address instructions but at

a high cost: now the instructions each must be 24 or 32

bits wide as discussed in computer architecture textbooks.

But remember smaller is faster!

Example: Use 3-address instruction (not a SMaRT

instruction): sub R12, R3, R6; which means R12 <= R6 –

R3.

Our novel idea of 2.5-address instructions

implemented in SMaRT is able to resolve this issue while

the instruction is still 16 bits wide. The cdr bit must be set

to 1 to operate in the 2.5-address mode.

Example: sub+R3, R6; which means R4 <= R6 – R3.

We frequently need this mode of addressing to avoid

the above data loss. The following are two examples to

show the need:

Example: In the well-known bubble sort, every two

adjacent numbers are read and then swapped if they are

not in the right order. Let us use a 2-address instruction to

compare the two numbers. We assume that they have

already been placed in registers R1 and R2:

slt R2, R1

This way, however, we will lose R2, and therefore not

be able to store it at the right address if the numbers

happen to be out of order. To resolve this issue we use

the following 2.5-address instruction instead:

slt+R2, R1

Example: Suppose that class grades for two tests have

been placed in two arrays, and now we are going to write

a program to obtain a list of grade pairs each with 10+

points of improvement. In our code, we need to read each

grade pair, subtract them, and then compare the

difference with 10. Let us say the grade pair is read into

R4 and R7. To get the difference if we use instruction sub

R4, R7, we will lose R4 and therefore not be able to save

it in the output array in case of a satisfactory grade

improvement. To resolve this issue, we use the 2.5-

address version of sub instead:

sub+R4, R7

Note on 2.5-address instructions: In the current

implementation, even if cdr was set to 1, the MSB of the

destination register address would not be affected; so Rd:

0111 would create Rd+1: 0000, and Rd: 1111 would

result in Rd+1: 1000.

The concept of 2.5-address instructions is the first

major contribution of our work in this paper. This way

we are able to avoid data loss that inherently exists in 2-

address processors. The second major contribution of our

work is taking advantage of the temporal locality of

reference in accessing the two upper and lower halves of

the register file to significantly extend the short-branch

range as be explained in Section C.

B. LSI-Type Instructions

There are one arithmetic and two memory reference

instructions in this category:

Add Immediate (addi): The 5-bit constant is signed

extended and added to Rs; the sum goes to Rd. See LSI-

type in Fig. 2.

Load Word (lw): The 5-bit constant is signed extended

and added to Rs, the base register, to get the effective

address. The word at this address is read from the data

memory and placed in Rd. See Fig. 2.

Store Word (sw): The effective address is generated as

explained above. Then Rd is written at this address in the

data memory. See Fig. 2.

The MSBs of Rs and Rd fields are saved by the R and

LSI categories in two flip-flips called msbRs and msbRd,

respectively, and then used by the branch instructions that

appear after the R or LSI instruction in the SMaRT code

as explained shortly.

C. B-Type Instructions

There are two conditional short branch instructions in

this category, namely branch on equal or not equal, each

International Journal of Electronics and Electrical Engineering Vol. 5, No. 1, February 2017

©2017 Int. J. Electron. Electr. Eng. 53

with a range of +/- 64. We also use two special cases to

create two more instructions:

Branch on Equal (beq): The 7-bit offset is sign

extended and added to PC+1 to get the successful branch

address. See B-type in Fig. 2. The next instruction will be

taken from this address if Rs = Rd; otherwise the code

will continue sequentially.

Note that the Rs and Rd fields are now only 3 bits wide;

their MSBs are hidden and will be taken at run time from

msbRs and msbRd, the two MSB flip-flops in the CPU.

These flip-flops are updated by LSI- and R-type

instructions as explained above. This way SMaRT may

take advantage of the temporal locality of reference in

accessing the two upper and lower halves of the register

file. This means that, for example, it is very likely that a

branch instruction will use the lower half of the register

file if the most recent LSI- or R-type instruction also uses

the lower half. Our preliminary studies show a high hit

rate for this locality-in-time. As part of our ongoing

research, we are looking at different benchmarks to better

understand the hit rate. Hiding the two MSBs widens the

offset field to 7 bits resulting in a 4-fold increase in the

branch range.

Branch on Not Equal (bne): This instruction is similar

to the “brach on equal” instruction, but now the branch

condition is Rs ≠ Rd.

Set msb FFs and Return from Subroutine: We use the

B-type with offset = 0 to create the following two

instructions:

Set msb FFs (sff): When the above mentioned temporal

locality of reference fails, the programmer may use set

msb FFs instruction to explicitly set the MSB flip flops.

This instruction stores its bits 10 and 9 in msbRs and

msbRd flip-flops, respectively. See Fig. 3. The branch

instructions use these MSBs as explained above.

Figure 3. Set msb FFs, a special B-type instruction

Return from Subroutine (rtn): This instruction jumps to

the instruction-memory location pointed to by R1. Use

this instruction to return from a subroutine.

D. BL-Type Instructions

The range of a short branch instruction is only +/- 64.

This constraint is removed in BL-type branches at the

cost of one more word (offset) and one more clock cycle.

There are 2 instructions in this category, namely baleq

and balne, which additionally save the return address (the

word address right after the offset) in register R1. So

these instructions are also used to conditionally call

subroutines. We have used the short branch instruction

formats with an offset of -1 to create the long branches.

Branch and Link on Equal (baleq): The 16-bit offset is

added to PC+1 to get the successful branch address. The

next instruction will be taken from this address if Rs = Rd;

otherwise the code will continue sequentially. In case of a

successful branch, the return address will be saved in R1.

The MSBs of Rs and Rd fields will be taken from the

MSB flip-flops, which are updated by R-type and LSI-

type instructions.
Branch and Link on Not Equal (balne): This

instruction is similar to the above instruction, but now the

branch condition is Rs ≠ Rd.

E. Input/Output

SMaRT is a memory-mapped I/O processor. The I/O is

mapped to the lower half (towards the higher addresses)

of the 64-K address space. Therefore, a 1 at the MSB

implies an I/O address. SMaRT asserts output lines IORE

or IOWE when a lw from an Input Device or a sw to an

Output Device, respectively, is being executed. See the

SMaRT datapath in Fig. 1.

IV. IMPLEMENTATIONS COSTS

In this section we look at the performance and

hardware costs incurred by the above two SMaRT’s

novelties. We also show how the control unit takes care

of the 2-word 2-cycle long-branch instructions.

A. Cost of 2.5-Address Mode

In terms of hardware, the main cost
1
 for this feature is

only one 3-bit incrementor, which takes the 3 LSBs of the

Rd field of R-type instructions and generates the 3 LSBs

of the destination register address should the cdr bit be set

to 1. (The MSB of the destination register address

remains unchanged in this process.) In terms of

performance, however, no cost is incurred by this novelty

as the incrementor is not added to the critical path of the

R-type instruction, let alone the critical path of SMaRT.

See Fig. 4, where the register file is split into two logical

parts, namely “Read Register File” and “Write Register

File” to better illustrate the critical path. As you see, the

output of the incrementor, the destination register address,

will have stabilized well before the output of the ALU

stabilizes leaving the incrementor out of the critical path.

Figure 4. Critical path of R-type instructions

The critical path of SMaRT is shown in Fig. 5. In this

diagram, the multiplexers are removed to save space.

This critical path, which belongs to the lw instruction, is

the same as that of the R-type instructions plus the data

memory.

1 Obviously one instruction bit is also used to distinguish between 2-
address and 2.5-address instructions. This bit could be saved should 2-

address mode be ruled out. The former option is used in the current

version of SMaRT.

International Journal of Electronics and Electrical Engineering Vol. 5, No. 1, February 2017

©2017 Int. J. Electron. Electr. Eng. 54

Figure 5. Critical path of SMaRT

B. Cost of Taking Advantage of Locality of Reference

The major cost components to hide the most

significant bits of the register fields in a branch

instruction are as follows:

SMaRT uses two flip flops
2
, msbRs ans msbRd, and

logic circuits to set or reset the flip flops by the LSI- and

R-type instructions as well as the sff instruction as

illustrated in Fig. 6.

Figure 6. MSB FFs: Read and write operations

Flip flop msbRs is loaded with bit 11 of the current

instruction if it is LSI or R-type. The flop will be loaded

with bit 10 of the current instruction if it happens to be a

sff instruction. Similarly, flip flop msbRd is loaded with

bit 7 of the current instruction if it is LSI- or R-type. The

flop will be loaded with bit 9 of the current instruction if

it happens to be a sff instruction. See also Fig. 3.

Fig. 6 additionally shows how the output of the two

flip flops are used: If the current instruction is a branch

instruction, the MSB of the Rs field will be taken from

flip flop msbRs, otherwise from bit 11 of the current

instruction. Similarly, if the current instruction happens

to be a branch instruction, the MSB of the Rd field will

be taken from flip flop msbRd, otherwise from bit 7 of

the current instruction. The two flip flops are also shown

in Fig. 1 next to the register address decoder.

C. Cost of Long-Branch Instructions

To support the long-branch instructions, SMaRT needs

a memory cell in its control unit as shown in Fig. 1. This

cell is set to 1 should the current instruction be the first

word of a long branch, otherwise it is reset to 0. On the

other hand, the memory cell is checked every cycle: if it

is set, the current instruction will be interpreted as the

2 We could also use two latches instead of the two flip flops.

offset of the long branch; this will set the program

counter to the right jump address if the branch instruction

happens to be successful; otherwise SMaRT will skip the

offset and continue sequentially.

V. SMART OPERATION MODES

SMaRT has four operation modes, namely, Single-Step,

Manual, Run and Init. In the Single-Step mode the clock

signal is virtually generated by a pushbutton, while the

clock frequency is high in the Run mode as well as the

Init mode. In the Single-Step mode, you may take

SMaRT to the Manual mode in which each data-memory

location may be addressed and displayed individually.

The output of instruction memory or the output of the

program counter may always be selected manually one at

a time and displayed. See the SMaRT datapath in Fig. 1.

In the Init mode, the contents of a data ROM are copied

into the data memory. You may use this mode to

initialize the data memory.

Fig. 7 shows the state machine to control the SMaRT

operation modes. There are 3 pushbuttons used in this

graph, namely Step, Run and GO. The Step button

executes one instruction at a time. The GO button copies

the data ROM into the data memory. The Run button

executes the program nonstop at a high frequency. In the

current implementation, the data ROM is 128 words long.

See also the SMaRT datapath in Fig. 1.

Figure 7. SMaRT mode controller

VI. SORTING COPROCESSOR AND PORTS

We first explain a sorting algorithm, then show its 32-

key implementation, and finally hook it up to SMaRT,

and illustrate the results.

A. Sorting Algorithm

We have used the pipelined and parallel sorting

algorithm that we developed in [22] to implement a 32-

key 16-bit sorting coprocessor for SMaRT. The 8-key 16-

bit version of the sorter is depicted in Fig. 8 to better

explain how the algorithm works.

Each key has a valid bit. Initially the keys are placed in

an 8-stage 16-bit shift register as shown in Fig. 8a while

their valid bits are all asserted. A 3-stage 8-leaf binary

tree of soring elements is connected to the shift register as

illustrated in this figure. A sorting element reads as many

(0, 1 or 2) valid inputs or keys as it has available. If there

International Journal of Electronics and Electrical Engineering Vol. 5, No. 1, February 2017

©2017 Int. J. Electron. Electr. Eng. 55

is no valid input, the sorting element stays idle. If there is

only one valid key, then the sorting element reads and

places the key at the output of the element while its valid

bit at the output is asserted. If there are two valid inputs,

then the sorting element compares them, and places the

largest one at the output of the element while its valid bit

is asserted. When a valid key is read, its valid bit at the

input is deasserted to mark the key as invalid. Invalid

keys are grayed out in Fig. 8. The sorting tree will look

like Fig. 8b during the second clock cycle. In two more

such cycles, the largest key would appear at the root of

the sorting tree as shown in Fig. 8d. The other 7 keys will

appear at the tree’s root one at a time during the

following 7 cycles.

Figure 8. Pipelined 8-leaf sorting tree during 4 clock cycles

B. Implementation

A logic symbol for sorter2, a 2-bit sorting element, is

depicted in Fig. 9a. There are 2 input ports for 2 input

keys in sorter2. Once sorter2 decides which key to read, it

asserts the associated “write” output to mark the selected

key as invalid. The selected key is placed at the output of

sorter2 along with an asserted valid bit.

We have used thirty one instances of sorter2 organized

as a binary tree with 32 leaves to design a 32-key sorter.

Fig. 9b illustrates only the upper half of this symmetric

tree to save space. A 32-stage shift register is located on

the left. The other rectangles are identical instances of

sorter2. The way that the sorter is hooked up to SMaRT is

also shown in Fig. 9b.

SMaRT is able to write one 16-bit word or key at a

time at the tail of the shift register. The tail is mapped to

address 8001. So that, a store 8001 instruction will write

into the shift register, and additionally will shift the

contents of the shift register one location forward.

Therefore, the memory bank will fill up after 32 store

8001 instructions. When a word is written at the tail, the

valid bit of the tail is set to 1 to indicate a valid key.

Since the sorter’s output is 17 bits wide, the 16-bit key

portion and the 1-bit status portion (the MSB) of the

sorter’s output are mapped to two different addresses,

namely odd and even addresses, respectively. See Fig. 9b.

Therefore, a load 8001 instruction will read the “key”

output of the sorting tree. Additionally, the same load

instruction will apply one clock pulse to the sorter

pipeline, and move it one stage forward. A load 8000

instruction, on the other hand, will only read the status

and not move the tree forward anymore. The status word

consists of 15 leading 0s followed by the valid bit.

Therefore, the status word may be either 1 or 0, which

indicates a valid key or an invalid key, respectively.

Once the shift register fills up, SMaRT starts reading

and keeps reading the root of the sorting tree until the

valid bit is asserted. From now on and with every load

8001 instruction, the valid key at the output of the sorter

is read, while the next sorted key replaces the current one.

The port reset address is 8000. So, a store 8000

instruction will reset the system as shown in Fig. 9b.

When the sorter is reset, all the valid bits are deasserted.

Figure 9. (a) Sorting element, (b) upper half of sorter

VII. EXAMPLE

The following SMaRT program sends 32 keys located

at data memory addresses 10 through 41 to the sorting

coprocessor, waits for the largest number to appear at the

root of the sorting tree, and then reads the sorted keys one

at a time as they reach the root, and seats them in

memory locations 42 through 73:

start: -- machine code

0 sub R0, R0 0x0008 -- reset pointer

1 lw R2, (R0) 0x4020 -- get “reset port”

 Adrs

2 addi R1, R2, 1 0x1211 -- get “data port”

 Adrs

3 sw R2, (R2) 0x5220 -- reset all Valid bits

4 lw R7, 1(R0) 0x4071 --“end of array”

 offset+1

again: -- Copy array of keys from dMem to sorter:

5 addi R7, -1 0x977F -- update offset

6 lw R6, 10(R7) 0x476A -- read next key

International Journal of Electronics and Electrical Engineering Vol. 5, No. 1, February 2017

©2017 Int. J. Electron. Electr. Eng. 56

7 sw R6, (R1) 0x5160 -- write it in sorter

8 bne R7, R0, again 0xBF8C -- repeat if not done

wait: -- Run sorter and read valid bit until it is set to 1

9 lw R6, (R1) 0x4160 -- run sorter

10 lw R6, (R2) 0x4260 -- read key’s valid bit

11 beq R6, R0, wait 0xAE8D -- do it again if

 invalid

--Read sorted keys & put them in dMem until key is

 invalid:

12 lw R7, 2(R0) 0x4072 --pointer to sorted

 array

repeat:

13 lw R6, (R1) 0x4160 -- read key from

 sorter

14 sw R6, (R7) 0x5760 -- store it in dMem

15 addi R7, R7, 1 0x1771 -- update pointer

16 lw R6, (R2) 0x4260 -- read valid bit

17 bne R6, R0, repeat 0xBE8B -- repeat if valid

18 beq R0, R0, -2 0xA88E -- stay here forever!

Note that this is just an I/O-intensive example to

demonstrate the functionality of SMaRT. The

performance will be improved should SMaRT

communicate with the sorter through a DMA channel.

We have implemented a DMA controller for this

processor. It is part of our ongoing research to make the

most of SMaRT. Fig. 10 shows the simulation result for

the above code using the Altera Modelsim simulator.

Figure 10. Simulation results

VIII. CONCLUSION

We presented SMaRT, our small machine for research

and teaching, and introduced the novel idea of 2.5-

address instructions. This addressing mode enables

SMaRT to avoid the data loss that exists in 2-address

machines, and therefore makes our 16-bit SMaRT

comparable to expensive 3-address 32-bit processors in

accessing the register file. In our architecture, the MSBs

of the operand registers in LSI- and R-type instructions

are carried over to the following conditional branch

instructions unless otherwise specified by the

programmer. This lets SMaRT’s branch instructions take

advantage of the temporal locality of reference in

accessing the two upper and lower halves of the register

file, and get a significantly larger range by increasing the

offset-field width to 7 bits. Based on our preliminary

studies we are expecting a high hit rate for this locality-

in-time. As part of our ongoing research, we are taking

closer look at the hit rate. We then showed that there is

almost no performance penalty to achieve these novelties.

We also demonstrated that the associated hardware

penalty is negligible. To illustrate SMaRT’s functionality,

we implemented a sorting accelerator, plugged it into

SMaRT, and successfully mapped the whole system into

a FPGA chip. The accelerator receives the keys from

SMaRT, sorts them and returns them to SMaRT.

SMaRT is our current research platform. The plan is to

expand this platform in a variety of directions. To

improve SMaRT’s performance, we are now working on

a pipelined version of SMaRT. We are also looking at

different algorithms and see how efficiently they may be

mapped on SMaRT, and therefore how to improve

SMaRT to map those algorithms more efficiently. This

direction may take us to a SMaRT-based MIMD

architecture and open research avenues within the

paradigm of Adaptive Network on Chip. Low-power

SMaRT is another avenue for our future work towards

IOT, the Internet of Things. As the first step in this

direction, we are planning to minimize SMaRT’s power

consumption at logic level as well as microarchitecture

level.

ACKNOWLEDGMENTS

This work was supported by a Topical Grant from

KEEN, the Kern Entrepreneurial Engineering Network

[23].

REFERENCES

[1] What is a 16 bit microcontroller? Future electronics. [Online].
Available:

https://www.futureelectronics.com/en/Microcontrollers/16-bit-

microcontroller.aspx

[2] NXP 8/16 bit MCUs. [Online]. Available:

http://www.nxp.com/products/microcontrollers-and-
processors/more-processors/

[3] Microchip 16-bit MCU and DSC programmer’s reference manual.

[Online]. Available:
http://ww1.microchip.com/downloads/en/DeviceDoc/70157F.pdf

[4] Texas Instruments MSP430x2xx Family User's Guide. [Online].
Available: http://www.ti.com/lit/ug/slau144j/slau144j.pdf

[5] S. Barrett and D. Pack, Microcontroller Programming and

Interfacing: Texas Instruments MSP430, 1st ed., Morgan &
Claypool Publishers, 2011.

[6] H. W. Huang, The HCS12 / 9S12: An Introduction to Software and
Hardware Interfacing, 2nd ed., Delmar Cengage Learning, 2009.

[7] L. D. Jasio, Programming 16-Bit PIC Microcontrollers in C

Learning to Fly the PIC 24, 2nd ed., Newnes, 2011.
[8] T. Wilmshurst, Designing Embedded Systems with PIC

Microcontrollers: Principles and Applications, 2nd ed., Newnes,
2009.

International Journal of Electronics and Electrical Engineering Vol. 5, No. 1, February 2017

©2017 Int. J. Electron. Electr. Eng. 57

[9] Dragon12-Plus-USB trainer for Freescale HCS12 microcontroller
family user’s manual for Rev. G board, Revision 1.10. [Online].

Available:

http://www.evbplus.com/download_hcs12/dragon12_plus_usb_9s
12_manual.pdf

[10] Microchip explorer 16 development board user’s guide. [Online].
Available:

http://ww1.microchip.com/downloads/en/DeviceDoc/Explorer%2

016%20User%20Guide%2051589a.pdf
[11] Microchip PIC32MX family reference manual. [Online].

Available:
http://hades.mech.northwestern.edu/images/2/21/61132B_PIC32R

eferenceManual.pdf

[12] D. A. Patterson and D. R. Ditzel, “The case for the reduced
instruction set computer,” ACM SIGARCH Computer Architecture

News, vol. 8, no. 6, pp. 25-33, 1980.
[13] ARM’s Reach: 50 billion chip milestone. [Online]. Available:

http://www.broadcom.com/blog/chip-design/arms-reach-50-

billion-chip-milestone-video/
[14] F. C. Yang and I. J. Huang, “An embedded low power/cost 16-bit

data/instruction microprocessor compatible with ARM7 software
tools,” in Proc. Asia and South Pacific Design Automation Conf.,

Yokohama, 2007, pp. 902-907.

[15] S. M. S. Muslim and Z. U. Ahmad, “Design of an algorithmic
state machine controlled, field programmable gate array based 16-

bit microprocessor,” in Proc. Intl Symposium on Integrated
Circuits, Singapore, 2007, pp. 434-436.

[16] L. Morales-Velazquez, R. A. Osornio-Rios and R. J. Romero-

Troncoso, “FPGA embedded single-cycle 16-bit microprocessor
and tools,” in Proc. IEEE Intl Conf. on Reconfigurable Computing

and FPGAs, Cancun, 2012, pp. 1-6.
[17] A. S. Gheorghe and C. Burileanu, “Savage16 - 16-bit RISC

architecture general purpose microprocessor,” in Proc. Intl

Semiconductor Conf., Sinaia, 2010, pp. 521-524.

[18] S. Sakthikumaran, S. Salivahanan, and V. S. K. Bhaaskaran, “16-
Bit RISC processor design for convolution application,” in Proc.

Intl Conf. on Recent Trends in Information Technology, Chennai,

2011, pp. 394-397.
[19] J. L. L. Presa and E. P. Calle, “MMP16 a 16-bit didactic micro-

programmed micro-processor,” in Proc. International Conf. on
Computer Research and Development, Shanghai, 2011, pp. 61-65.

[20] T. C. Tang, L. Kung, C. C. Ho, and H. J. Chang, “Embedded

controller design for portable fuel cell,” in Proc. 9th Intl Conf. on
Information, Communications and Signal Processing, Tainan,

2013, pp. 1-3.
[21] A. Suwannakom, “Adaptive control performance of a mobile

robot using hybrid of SLAM and fuzzy logic control in indoor

environment,” in Proc. Intl Electrical Engineering Congress,
Chonburi, 2014, pp. 1-4.

[22] N. Tabrizi and N. Bagherzadeh, “An ASIC design and formal
analysis of a novel pipelined and parallel sorting accelerator,”

Integration, the VLSI Journal, vol. 41, no. 1, pp. 65-75, 2008.

[23] The Kern Family Foundation. [Online]. Available:
http://www.kffdn.org/entrepreneurial-mindset/

Dr. Nozar Tabrizi received his BS and MS
degrees from the Electrical Engineering

Department at Sharif University of Technology,
and his PhD degree from The University of

Adelaide. He is currently an associate professor

of Computer Engineering at Kettering
University. His research interests include

Computer Microarchitecture, Computer
Arithmetic, Parallel Processors and Network on

Chip.

International Journal of Electronics and Electrical Engineering Vol. 5, No. 1, February 2017

©2017 Int. J. Electron. Electr. Eng. 58

