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Abstract—We introduce SMaRT, a 16-bit single-cycle 

RISC-type processor with 16-bit-wide instructions. SMaRT 

features the novel concept of 2.5-address instructions to 

avoid the data loss that inherently exists in 2-address 

processors. Additionally, SMaRT’s short-branch 

instructions take advantage of the temporal locality of 

reference in accessing the upper or lower halves of the 

CPU’s 16x16 orthogonal register file. This allows SMaRT to 

significantly extend the range of the short-branch 

instructions. We show that these novelties are achieved at 

almost no performance cost and negligible hardware cost. 

SMaRT has four operation modes, namely Single-Step, to 

execute one instruction at a time, Manual, to display and 

inspect individual locations of data memory, Run, to run the 

whole code nonstop, and Init, to copy a read-only memory 

to the data memory for initialization purposes. We also 

implement and present an input/output port and a sorting 

coprocessor, and then hook it up to SMaRT through the 

port as an example. We have successfully synthesized the 

combined SMaRT and the sorting coprocessor into the 

Altera Cyclone II FPGA chip, and tested them. 

 
Index Terms—2.5-address processors, FPGA synthesis, 

microcontrollers, microprocessors, RISC, single-cycle CPUs, 

temporal locality 

 

I. INTRODUCTION 

Sixteen-bit microcontrollers are manufactured by 

different semiconductor companies and used in a verity 

of embedded systems in different areas such as office 

equipment, power tools, toys, medical/healthcare industry, 

remote controls, automotive industry and appliances [1]. 

Freescale, recently combined with NXP and called NXP, 

manufactures the S12XE family of 16-bit automotive and 

industrial microcontrollers. NXP is a global 

semiconductor company specializing in embedded 

technologies. For detailed information on a full range of 

the NXP 16-bit microcontrollers such as the HCS12 see 

[2]. The Microchip PIC24 MCUs and dsPIC® DSCs [3] 

and the Texas Instruments MSP430 [4] are also widely 

used families of modern 16-bit processors. Microchip 

Technology Inc. and Texas Instruments are leading 

providers of microcontrollers and analog semiconductors. 

Sixteen-bit microcontrollers are also commonly used 

in academia. Numerous textbooks, such as [5]-[8], are on 

the market focusing on this size microcomputers. There 
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are also 16-bit microcontroller-based training boards on 

the market such as the HCS12-based Dragon12Plus [9], 

and the PIC24-based Explorer 16 [10]. We have been 

using the Dragon12Plus education board and an HCS12-

based textbook [6] for a Microcomputers course in our 

ECE department for many years. 

Although the PIC24 family of Microchip 

microcontrollers uses a 16-bit datapath with same-size 

instructions, its instructions are 24 (not 16) bits wide. 

Additionally, this family is not a load/store machine 

unlike the PIC32 family of microcontrollers [11]. 

The 16-bit microcontrollers from NXP are built on 

CISC-type processors. Since there is almost no restriction 

on the instruction length, number of addressing modes or 

instruction types in this class of processors, their 

programmer’s model is rich and flexible but complex; 

this is why their time to market is usually long. 

Researchers as well as the market have given significant 

attention to RISC-type architectures since the early 1980s. 

One of the pioneering works on modern RISC was 

reported in [12]. The RISC-type ARM family of 

processors, which has taken over the mobile-device 

market, reached the 50-billion-chip milestone in 2014 

[13]. 

The Texas Instruments MSP430 family is not a 

load/store machine although it enjoys a reduced 

instruction set. This is why the MSP430 User's Guide 

calls it a RISC architecture [4]. Besides, it is a multi-

cycle- multi-length-instruction processor. On the other 

hand, 4 out of 16 registers in the register file of this 

family of microcontrollers are special-purpose. 

Additionally, the arithmetic and logical instructions are 

two-address instructions, and therefore the second 

operand will be overwritten, hence lost. 

The rest of the paper is organized as follows: In 

Section II some related work is reviewed and compared 

with SMaRT. Section III describes SMaRT instruction set. 

The performance and hardware costs due to the SMaRT 

novelties are discussed in Section IV. SMaRT operation 

modes are explained in Section V. You read about a 

sorting coprocessor and the way it is hooked up to 

SMaRT in Section VI followed by an example in Section 

VII. The conclusion is in Section VIII. 

II. BACKGROUND WORK 

Yang et al. propose a 16-bit Thumb instruction set 

microprocessor in [14]. The Thumb mode is 
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unfortunately not orthogonal; e.g., the Format 2 add/sub 

does not work on Hi register file. The ALU instructions 

(Format 4) only operate on Lo register pairs. Additionally, 

they are 2-address instructions. The Format-5 add 

instruction is also a 2-address one and cannot operate on 

a pair of Lo registers. A gate-array-based 16-bit 

microprocessor using an ASM controller is reported in 

[15], where the instructions operate on only two operand 

registers A and B. xQ16v3, a FPGA-based 16-bit 2-stage 

pipelined microprocessor, is introduced in [16], but again 

it is a 2-address machine. SAVAGE16, a 16-bit pipelined 

microprocessor is developed in [17]; however, its 

instructions are 32 bits wide. This processor has been 

used in some university projects. In [18] Sakthikumaran 

et al. develop a 16-bit single-cycle RISC processor for 

signal processing applications. They use a low-power 

incrementor for the PC and a high-speed/low-power 

modified Wallace tree multiplier in the ALU. The register 

file, however, consists of 8 general-purpose registers. In 

their MMP16 project [19], Presa et al. introduce a 

complete learning tool based on a 2-stage 16-bit pipelined 

and micro-programmed microprocessor. Although 

MMP16 enjoys a reduced instruction set, it is not a RISC 

CPU. 4, 8, 12 or 16-bit-wide OpCodes are used in 

different instructions of MMP16.  

In addition to being a research topic, 16-bit 

microcontrollers are also used by researchers. Tang et al. 

use the Microchip PIC18F4520 to design an embedded 

controller for a portable fuel cell [20]. A 16-bit dsPIC is 

used in [21] for motion control of a mobile robot. 

SMaRT enjoys separate data bus and address bus as 

well. However, each bus is only 16 (not 32) bits wide, as 

smaller is faster! SMaRT is a memory-mapped I/O 

machine with an address space of up to 64 K. See 

SMaRT datapath in Fig. 1.  

SMaRT instructions are single cycle and 16 bits wide 

with one exception: the branch and link instructions each 

are 2 words wide and also 2 clock cycles long. The 16x16 

register file of SMaRT is orthogonal with one exception: 

register 1 (R1) is the return address register as explained 

shortly; otherwise it can be used as a general-purpose 

register.  

In 16-bit-instruction RISC machines with 16 general-

purpose registers, it is a challenge to avoid the data loss 

due to 2-address instructions. To address this 

shortcoming, we introduce the concept of the so-called 

2.5-address machine: SMaRT programmers may specify 

the register located right after the first operand register as 

the destination register. For example, the following 

instruction will add R5 to R2 and place the result in R3, 

so R2 is not lost anymore: 

add+R2, R5 

 
Figure 1. SMaRT datapath 
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III.
 

SMART
 

INSTRUCTION SET ARCHITECTURE

 
There are four different instruction formats in this 

machine as shown in Fig. 2, namely R-type, LSI-type, B-

type and BL-type. Each SMaRT instruction is 16 bits 

wide (same as the data-bus width) with an exception of 

baleq and balne to be discussed in this section. The 

OpCode is always 3 bits wide and occupies bits 12 

through 14 of each instruction. 

 

Figure 2. SMaRT instruction formats 

A. R-Type Instructions 

All the instructions in this category have the same 

OpCode; the Function field distinguishes between the R-

type instructions. In the current (first) version of SMaRT, 

the following operations are supported: add, sub, and, or, 

nand, nor, slt. The specified operation is carried out on 

registers Rs and Rd, and the result goes to register Rd if 

cdr (MSB of instruction) = 0. See R-type in Fig. 2. 

The set less than instruction (slt) compares Rs and Rd, 

and sets the destination register to 1 if Rs < Rd; otherwise 

to 0. 

Example: slt R3, R6; which means R3 <= 1 if R6 < 

R3, else 0. 

Example: sub R3, R6; which means R3 <= R6 – R3. 

This, however, may result in a major shortcoming: one 

of the operand registers, R3 in the above two examples, is 

overwritten hence lost, which is not something that we 

like to happen if the overwritten register is going to be 

used later. We may resolve this issue by adding one more 

instruction, i.e. spending more time and power, to save 

the problematic register. Adding one instruction, 

however, is not an option in this work; we are looking 

for a less expensive solution to resolve the issue.  

A common technique used by processor designers to 

avoid the data  loss is to use 3-address instructions but at 

a high cost: now the instructions each must be 24 or 32 

bits wide as discussed in computer architecture textbooks. 

But remember smaller is faster! 

Example: Use 3-address instruction (not a SMaRT 

instruction): sub R12, R3, R6; which means R12 <= R6 – 

R3. 

Our novel idea of 2.5-address instructions 

implemented in SMaRT is able to resolve this issue while 

the instruction is still 16 bits wide. The cdr bit must be set 

to 1 to operate in the 2.5-address mode. 

Example: sub+R3, R6; which means R4 <= R6 – R3. 

We frequently need this mode of addressing to avoid 

the above data loss. The following are two examples to 

show the need:  

Example: In the well-known bubble sort, every two 

adjacent numbers are read and then swapped if they are 

not in the right order. Let us use a 2-address instruction to 

compare the two numbers. We assume that they have 

already been placed in registers R1 and R2: 

slt R2, R1 

This way, however, we will lose R2, and therefore not 

be able to store it at the right address if the numbers 

happen to be out of order. To resolve this issue we use 

the following 2.5-address instruction instead: 

slt+R2, R1 

Example: Suppose that class grades for two tests have 

been placed in two arrays, and now we are going to write 

a program to obtain a list of grade pairs each with 10+ 

points of improvement. In our code, we need to read each 

grade pair, subtract them, and then compare the 

difference with 10. Let us say the grade pair is read into 

R4 and R7. To get the difference if we use instruction sub 

R4, R7, we will lose R4 and therefore not be able to save 

it in the output array in case of a satisfactory grade 

improvement. To resolve this issue, we use the 2.5-

address version of sub instead: 

sub+R4, R7 

Note on 2.5-address instructions: In the current 

implementation, even if cdr was set to 1, the MSB of the 

destination register address would not be affected; so Rd: 

0111 would create Rd+1: 0000, and Rd: 1111 would 

result in Rd+1: 1000. 

The concept of 2.5-address instructions is the first 

major contribution of our work in this paper. This way 

we are able to avoid data loss that inherently exists in 2-

address processors. The second major contribution of our 

work is taking advantage of the temporal locality of 

reference in accessing the two upper and lower halves of 

the register file to significantly extend the short-branch 

range as be explained in Section C. 

B. LSI-Type Instructions 

There are one arithmetic and two memory reference 

instructions in this category:  

Add Immediate (addi): The 5-bit constant is signed 

extended and added to Rs; the sum goes to Rd. See LSI- 

type in Fig. 2. 

Load Word (lw): The 5-bit constant is signed extended 

and added to Rs, the base register, to get the effective 

address. The word at this address is read from the data 

memory and placed in Rd. See Fig. 2. 

Store Word (sw): The effective address is generated as 

explained above. Then Rd is written at this address in the 

data memory. See Fig. 2. 

The MSBs of Rs and Rd fields are saved by the R and 

LSI categories in two flip-flips called msbRs and msbRd, 

respectively, and then used by the branch instructions that 

appear after the R or LSI instruction in the SMaRT code 

as explained shortly. 

C. B-Type Instructions 

There are two conditional short branch instructions in 

this category, namely branch on equal or not equal, each 

International Journal of Electronics and Electrical Engineering Vol. 5, No. 1, February 2017

©2017 Int. J. Electron. Electr. Eng. 53



with a range of +/- 64. We also use two special cases to 

create two more instructions:  

Branch on Equal (beq): The 7-bit offset is sign 

extended and added to PC+1 to get the successful branch 

address. See B-type in Fig. 2. The next instruction will be 

taken from this address if Rs = Rd; otherwise the code 

will continue sequentially. 

Note that the Rs and Rd fields are now only 3 bits wide; 

their MSBs are hidden and will be taken at run time from 

msbRs and msbRd, the two MSB flip-flops in the CPU. 

These flip-flops are updated by LSI- and R-type 

instructions as explained above. This way SMaRT may 

take advantage of the temporal locality of reference in 

accessing the two upper and lower halves of the register 

file. This means that, for example, it is very likely that a 

branch instruction will use the lower half of the register 

file if the most recent LSI- or R-type instruction also uses 

the lower half. Our preliminary studies show a high hit 

rate for this locality-in-time. As part of our ongoing 

research, we are looking at different benchmarks to better 

understand the hit rate. Hiding the two MSBs widens the 

offset field to 7 bits resulting in a 4-fold increase in the 

branch range. 

Branch on Not Equal (bne): This instruction is similar 

to the “brach on equal” instruction, but now the branch 

condition is Rs ≠ Rd. 

Set msb FFs and Return from Subroutine: We use the 

B-type with offset = 0 to create the following two 

instructions: 

Set msb FFs (sff): When the above mentioned temporal 

locality of reference fails, the programmer may use set 

msb FFs instruction to explicitly set the MSB flip flops. 

This instruction stores its bits 10 and 9 in msbRs and 

msbRd flip-flops, respectively. See Fig. 3. The branch 

instructions use these MSBs as explained above. 

 
Figure 3. Set msb FFs, a special B-type instruction 

Return from Subroutine (rtn): This instruction jumps to 

the instruction-memory location pointed to by R1. Use 

this instruction to return from a subroutine. 

D. BL-Type Instructions 

The range of a short branch instruction is only +/- 64. 

This constraint is removed in BL-type branches at the 

cost of one more word (offset) and one more clock cycle. 

There are 2 instructions in this category, namely baleq 

and balne, which additionally save the return address (the 

word address right after the offset) in register R1. So 

these instructions are also used to conditionally call 

subroutines. We have used the short branch instruction 

formats with an offset of -1 to create the long branches. 

Branch and Link on Equal (baleq): The 16-bit offset is 

added to PC+1 to get the successful branch address. The 

next instruction will be taken from this address if Rs = Rd; 

otherwise the code will continue sequentially. In case of a 

successful branch, the return address will be saved in R1.  

The MSBs of Rs and Rd fields will be taken from the 

MSB flip-flops, which are updated by R-type and LSI-

type instructions. 
Branch and Link on Not Equal (balne): This 

instruction is similar to the above instruction, but now the 

branch condition is Rs ≠ Rd. 

E. Input/Output 

SMaRT is a memory-mapped I/O processor. The I/O is 

mapped to the lower half (towards the higher addresses) 

of the 64-K address space. Therefore, a 1 at the MSB 

implies an I/O address. SMaRT asserts output lines IORE 

or IOWE when a lw from an Input Device or a sw to an 

Output Device, respectively, is being executed. See the 

SMaRT datapath in Fig. 1. 

IV. IMPLEMENTATIONS COSTS 

In this section we look at the performance and 

hardware costs incurred by the above two SMaRT’s 

novelties. We also show how the control unit takes care 

of the 2-word 2-cycle long-branch instructions. 

A. Cost of 2.5-Address Mode 

In terms of hardware, the main cost
1
 for this feature is 

only one 3-bit incrementor, which takes the 3 LSBs of the 

Rd field of R-type instructions and generates the 3 LSBs 

of the destination register address should the cdr bit be set 

to 1. (The MSB of the destination register address 

remains unchanged in this process.) In terms of 

performance, however, no cost is incurred by this novelty 

as the incrementor is not added to the critical path of the 

R-type instruction, let alone the critical path of SMaRT. 

See Fig. 4, where the register file is split into two logical 

parts, namely “Read Register File” and “Write Register 

File” to better illustrate the critical path. As you see, the 

output of the incrementor, the destination register address, 

will have stabilized well before the output of the ALU 

stabilizes leaving the incrementor out of the critical path.  

 

Figure 4. Critical path of R-type instructions 

The critical path of SMaRT is shown in Fig. 5. In this 

diagram, the multiplexers are removed to save space. 

This critical path, which belongs to the lw instruction, is 

the same as that of the R-type instructions plus the data 

memory. 

                                                           
1 Obviously one instruction bit is also used to distinguish between 2-
address and 2.5-address instructions. This bit could be saved should 2-

address mode be ruled out. The former option is used in the current 

version of SMaRT. 
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Figure 5. Critical path of SMaRT 

B. Cost of Taking Advantage of Locality of Reference 

The major cost components to hide the most 

significant bits of the register fields in a branch 

instruction are as follows: 

SMaRT uses two flip flops
2
, msbRs ans msbRd, and 

logic circuits to set or reset the flip flops by the LSI- and 

R-type instructions as well as the sff instruction as 

illustrated in Fig. 6.  

 

Figure 6. MSB FFs: Read and write operations 

Flip flop msbRs is loaded with bit 11 of the current 

instruction if it is LSI or R-type. The flop will be loaded 

with bit 10 of the current instruction if it happens to be a 

sff instruction. Similarly, flip flop msbRd is loaded with 

bit 7 of the current instruction if it is LSI- or R-type. The 

flop will be loaded with bit 9 of the current instruction if 

it happens to be a sff instruction. See also Fig. 3. 

Fig. 6 additionally shows how the output of the two 

flip flops are used: If the current instruction is a  branch 

instruction, the MSB of the Rs field will be taken from 

flip flop msbRs, otherwise from bit 11 of the current 

instruction. Similarly, if the current instruction happens 

to be a branch instruction, the MSB of the Rd field will 

be taken from flip flop msbRd, otherwise from bit 7 of 

the current instruction. The two flip flops are also shown 

in Fig. 1 next to the register address decoder. 

C. Cost of Long-Branch Instructions 

To support the long-branch instructions, SMaRT needs 

a memory cell in its control unit as shown in Fig. 1. This 

cell is set to 1 should the current instruction be the first 

word of a long branch, otherwise it is reset to 0. On the 

other hand, the memory cell is checked every cycle: if it 

is set, the current instruction will be interpreted as the 

                                                           
2 We could also use two latches instead of the two flip flops. 

offset of the long branch; this will set the program 

counter to the right jump address if the branch instruction 

happens to be successful; otherwise SMaRT will skip the 

offset and continue sequentially. 

V. SMART OPERATION MODES 

SMaRT has four operation modes, namely, Single-Step, 

Manual, Run and Init. In the Single-Step mode the clock 

signal is virtually generated by a pushbutton, while the 

clock frequency is high in the Run mode as well as the 

Init mode. In the Single-Step mode, you may take 

SMaRT to the Manual mode in which each data-memory 

location may be addressed and displayed individually. 

The output of instruction memory or the output of the 

program counter may always be selected manually one at 

a time and displayed. See the SMaRT datapath in Fig. 1. 

In the Init mode, the contents of a data ROM are copied 

into the data memory. You may use this mode to 

initialize the data memory. 

Fig. 7 shows the state machine to control the SMaRT 

operation modes. There are 3 pushbuttons used in this 

graph, namely Step, Run and GO. The Step button 

executes one instruction at a time. The GO button copies 

the data ROM into the data memory. The Run button 

executes the program nonstop at a high frequency. In the 

current implementation, the data ROM is 128 words long. 

See also the SMaRT datapath in Fig. 1. 

 
Figure 7. SMaRT mode controller 

VI. SORTING COPROCESSOR AND PORTS 

We first explain a sorting algorithm, then show its 32-

key implementation, and finally hook it up to SMaRT, 

and illustrate the results.  

A. Sorting Algorithm 

We have used the pipelined and parallel sorting 

algorithm that we developed in [22] to implement a 32-

key 16-bit sorting coprocessor for SMaRT. The 8-key 16-

bit version of the sorter is depicted in Fig. 8 to better 

explain how the algorithm works. 

Each key has a valid bit. Initially the keys are placed in 

an 8-stage 16-bit shift register as shown in Fig. 8a while 

their valid bits are all asserted. A 3-stage 8-leaf binary 

tree of soring elements is connected to the shift register as 

illustrated in this figure. A sorting element reads as many 

(0, 1 or 2) valid inputs or keys as it has available. If there 
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is no valid input, the sorting element stays idle. If there is 

only one valid key, then the sorting element reads and 

places the key at the output of the element while its valid 

bit at the output is asserted. If there are two valid inputs, 

then the sorting element compares them, and places the 

largest one at the output of the element while its valid bit 

is asserted. When a valid key is read, its valid bit at the 

input is deasserted to mark the key as invalid. Invalid 

keys are grayed out in Fig. 8. The sorting tree will look 

like Fig. 8b during the second clock cycle. In two more 

such cycles, the largest key would appear at the root of 

the sorting tree as shown in Fig. 8d. The other 7 keys will 

appear at the tree’s root one at a time during the 

following 7 cycles. 

 

Figure 8. Pipelined 8-leaf sorting tree during 4 clock cycles 

B. Implementation 

A logic symbol for sorter2, a 2-bit sorting element, is 

depicted in Fig. 9a. There are 2 input ports for 2 input 

keys in sorter2. Once sorter2 decides which key to read, it 

asserts the associated “write” output to mark the selected 

key as invalid. The selected key is placed at the output of 

sorter2 along with an asserted valid bit. 

We have used thirty one instances of sorter2 organized 

as a binary tree with 32 leaves to design a 32-key sorter. 

Fig. 9b illustrates only the upper half of this symmetric 

tree to save space. A 32-stage shift register is located on 

the left. The other rectangles are identical instances of 

sorter2. The way that the sorter is hooked up to SMaRT is 

also shown in Fig. 9b. 

SMaRT is able to write one 16-bit word or key at a 

time at the tail of the shift register. The tail is mapped to 

address 8001. So that, a store 8001 instruction will write 

into the shift register, and additionally will shift the 

contents of the shift register one location forward. 

Therefore, the memory bank will fill up after 32 store 

8001 instructions. When a word is written at the tail, the 

valid bit of the tail is set to 1 to indicate a valid key. 

Since the sorter’s output is 17 bits wide, the 16-bit key 

portion and the 1-bit status portion (the MSB) of the 

sorter’s output are mapped to two different addresses, 

namely odd and even addresses, respectively. See Fig. 9b. 

Therefore, a load 8001 instruction will read the “key” 

output of the sorting tree. Additionally, the same load 

instruction will apply one clock pulse to the sorter 

pipeline, and move it one stage forward. A load 8000 

instruction, on the other hand, will only read the status 

and not move the tree forward anymore. The status word 

consists of 15 leading 0s followed by the valid bit. 

Therefore, the status word may be either 1 or 0, which 

indicates a valid key or an invalid key, respectively.  

Once the shift register fills up, SMaRT starts reading 

and keeps reading the root of the sorting tree until the 

valid bit is asserted. From now on and with every load 

8001 instruction, the valid key at the output of the sorter 

is read, while the next sorted key replaces the current one.  

The port reset address is 8000. So, a store 8000 

instruction will reset the system as shown in Fig. 9b. 

When the sorter is reset, all the valid bits are deasserted. 

 

Figure 9. (a) Sorting element, (b) upper half of sorter 

VII. EXAMPLE 

The following SMaRT program sends 32 keys located 

at data memory addresses 10 through 41 to the sorting 

coprocessor, waits for the largest number to appear at the 

root of the sorting tree, and then reads the sorted keys one 

at a time as they reach the root, and seats them in 

memory locations 42 through 73: 

start:         -- machine code 

0 sub R0, R0   0x0008 -- reset pointer 

1 lw R2, (R0)  0x4020 -- get “reset port” 

     Adrs 

2 addi R1, R2, 1 0x1211 -- get “data port” 

                  Adrs  

3 sw R2, (R2)  0x5220  -- reset all Valid bits 

4 lw R7, 1(R0) 0x4071  --“end of array” 

           offset+1 

again: -- Copy array of keys from dMem  to sorter:  

5 addi R7, -1  0x977F  -- update offset 

6 lw R6, 10(R7) 0x476A -- read next key 
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7 sw R6, (R1)  0x5160 -- write it in sorter 

8 bne R7, R0, again 0xBF8C -- repeat if not done  

wait: -- Run sorter and read valid bit until it is set to 1 

9 lw R6, (R1)  0x4160 -- run sorter 

10 lw R6, (R2)  0x4260 -- read key’s valid bit 

11 beq R6, R0, wait 0xAE8D -- do it again if 

                   invalid 

--Read sorted keys & put them in dMem until key is 

                                                                        invalid: 

12 lw R7, 2(R0) 0x4072  --pointer to sorted  

                           array 

repeat:   

13 lw R6, (R1)  0x4160 -- read key from 

                                sorter 

14 sw R6, (R7)  0x5760  -- store it in dMem 

15 addi R7, R7, 1 0x1771 -- update pointer 

16 lw R6, (R2)  0x4260 -- read valid bit 

17 bne R6, R0, repeat 0xBE8B -- repeat if valid 

18 beq R0, R0, -2 0xA88E -- stay here forever! 

Note that this is just an I/O-intensive example to 

demonstrate the functionality of SMaRT. The 

performance will be improved should SMaRT 

communicate with the sorter through a DMA channel. 

We have implemented a DMA controller for this 

processor. It is part of our ongoing research to make the 

most of SMaRT. Fig. 10 shows the simulation result for 

the above code using the Altera Modelsim simulator. 

 

Figure 10.  Simulation results 

VIII. CONCLUSION 

We presented SMaRT, our small machine for research 

and teaching, and introduced the novel idea of 2.5-

address instructions. This addressing mode enables 

SMaRT to avoid the data loss that exists in 2-address 

machines, and therefore makes our 16-bit SMaRT 

comparable to expensive 3-address 32-bit processors in 

accessing the register file. In our architecture, the MSBs 

of the operand registers in LSI- and R-type instructions 

are carried over to the following conditional branch 

instructions unless otherwise specified by the 

programmer. This lets SMaRT’s branch instructions take 

advantage of the temporal locality of reference in 

accessing the two upper and lower halves of the register 

file, and get a significantly larger range by increasing the 

offset-field width to 7 bits. Based on our preliminary 

studies we are expecting a high hit rate for this locality-

in-time. As part of our ongoing research, we are taking 

closer look at the hit rate. We then showed that there is 

almost no performance penalty to achieve these novelties. 

We also demonstrated that the associated hardware 

penalty is negligible. To illustrate SMaRT’s functionality, 

we implemented a sorting accelerator, plugged it into 

SMaRT, and successfully mapped the whole system into 

a FPGA chip. The accelerator receives the keys from 

SMaRT, sorts them and returns them to SMaRT.  

SMaRT is our current research platform. The plan is to 

expand this platform in a variety of directions. To 

improve SMaRT’s performance, we are now working on 

a pipelined version of SMaRT. We are also looking at 

different algorithms and see how efficiently they may be 

mapped on SMaRT, and therefore how to improve 

SMaRT to map those algorithms more efficiently. This 

direction may take us to a SMaRT-based MIMD 

architecture and open research avenues within the 

paradigm of Adaptive Network on Chip. Low-power 

SMaRT is another avenue for our future work towards 

IOT, the Internet of Things. As the first step in this 

direction, we are planning to minimize SMaRT’s power 

consumption at logic level as well as microarchitecture 

level. 
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