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Abstract—In this paper, a Complementarity Problem 

approach to solve the Economic Dispatch Problem (EDP) is 

presented. The problem is formulated as, Linear 

Complementarity Problem (LCP) when the transmission 

losses are neglected and Nonlinear Complementarity 

Problem (NCP) if the transmission losses are included in the 

power balance equation. The presented approach is more 

compact and needs less CPU time compared with other 

methods and algorithms presented in the literature. The 

main ideas of this work is presented via numerical examples. 

 

Index Terms—economic dispatch problem, Linear 

Complementarity Problem (LCP), Nonlinear 

Complementarity Problem (NCP) 

 

I. INTRODUCTION 

Economic Dispatch Problem (EDP) is an important 

issue in power system operation. The goal of the EDP is 

to minimize an objective function that reduces the power 

generation cost while satisfying various physical and 

operational constraints. The outcome of this approach is 

expected to improve output scheduling of online units. 

Under any load condition, EDP determines the power 

output of each plant (and each generation unit within the 

plant) which minimizes the overall generation cost [1]. In 

the traditional EDP, the fuel cost function of a generator 

has been approximately represented by a quadratic 

function. Many efforts have been made to solve this 

problem [2]. Several optimization techniques, such as 

gradient method, lambda iteration and Newton’s methods 

have been used. In these methods the solution is affected 

by the incremental cost curves, which are piecewise 

linear and monotonically increasing, to find the global 

minimum. Furthermore, recent research [3], [4] proved 

that although conventional linear programming methods 

are simple and have high search speed, they have certain 

drawbacks and limitations.  

                                                           
Manuscript received August 25, 2015; revised May 1, 2016. 

During the last two decades, the EDP has been solved 

using several alternative methods such as Artificial 

Neural Networks [5], [6], Evolutionary Programming (EP) 

[7]-[9], genetic algorithms (GA) [10], [11], Fast Genetic 

Algorithm (FGA) [12] Particle Swarm Optimization 

(PSO) [13], [14].  

In this paper, a Complementarity Problem approach to 

the solution of Economic Dispatch Problem (EDP) with 

quadratic cost function is presented. The problem 

formulation is based on the minimization of the 

generation cost subject to demand and transmission 

losses constraints and constraints introduced by upper 

and lower bounds on generated power of each unit. Two 

cases are considered: i) without transmission losses and ii) 

subject to transmission losses. In case (i) the problem 

formulation results finally in a Linear Complementarity 

Problem (LCP). In case (ii) the problem gets hard 

nonlinear and its formulated in a compact form as a 

Nonlinear Complementarity Problem (NCP). For the 

solution of these types of problems many algorithms and 

software have been developed recently [15], [16]. 

The rest of the paper is organized as follows: In section 

two the problem formulation is shown, section three 

outlines numerical examples that illustrate the 

performance of the suggested approach in comparison 

with other methods, finally the conclusion is discussed in 

section four.  

II. PROBLEM FORMULATION 

The economic dispatch problem is a mathematical 

optimization problem. The goal of the solution is to 

achieve the optimal power dispatches from various power 

generating units for a determined time period to minimize 

the total generation cost while satisfying the specified 

constraint. The most commonly minimized function is the 

total cost of real power generation. The individual costs 

are assumed to be functions of active power generation 

and represented by quadratic equations. The constraints 
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are the power balance equation and the upper and lower 

limits on the generated power by each unit. 

A. Economic Dispatch without Transmission Losses 

In this case the problem is to minimize the objective 

function subject to constraints of the demand load and 

minimum and maximum limits on the power output of 

the units. The mathematical optimization problem is as 

follows: 
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where: 

i  unit number  

n  number of units   

Fi(.)  fuel cost function of the unit i  

Pi  power from the 
th

i  generator   

PD  demand load   

Pi, max  upper limit of the 
th

i  generator   

Pi, min  lower limit of the 
th

i  generator   

Equation (3) can be written in the following form [17]: 

 
' ''

, ,= 0,    = 0   i i i min i i max iP P P P P P    (4) 

Adding these equations we obtain: 

 
' ''

, ,= i i i max i minP P P P                    (5) 

and since ' 0

iP  this equation can be written in term of 

'
iP : 

 
'

, , i i max i minP P P                        (6) 

The first equation in (4) can be written in terms of the 

new variable '
iP  to obtain the power from the thi  

generator: 

 
'

,= i i i minP P P                          (7) 

Substituting (7) in (1) and (2) the optimization problem 

can be expressed in terms of '
iP  as follows: 

 '
,
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Subject to the following constraints: 

 '
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Constraint (9) can be written in the form of two 

inequality constraints: 

 '
,
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The problem described by the (8), (10), and (11) is an 

optimization problem, which contains both equality and 

inequality constrains, needs the deployment of the 

Karush-Kuhn-Tucker (KKT) optimality conditions [18]. 

Therefore these equations are rewritten in matrix form as 

follows: 
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e is 1 × n is vector of ones, I is n × n identity matrix, 

' ' ' '
1 2= [ , , , ]P

t
nP P P , 1, 2, ,= [ , , , ]P

t
min min min n minP P P  

and 1, 2, ,= [ , , , ]P
t

max max max n maxP P P .  

The Karush-Kuhn-Tucker (KKT) Lagrange for the 

dispatch problem given by (12) and (13) is [19]: 

 L ' ' '( )P DP g P k  t t t                     (14) 

'( )eP eP  t
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' '( ) ( )u IP P P y P    t t
max min  

where  ,  , u , and y  are the Lagrange multipliers 

associated with the constraints. The Karush-Kuhn-Tucker 

(KKT) necessary optimality conditions for the above 

problem are: 

 '

'
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P



 



tL
                     (15) 

                 =e Iu y 0  t  

International Journal of Electronics and Electrical Engineering Vol. 5, No. 2, April 2017

©2017 Int. J. Electron. Electr. Eng. 172



 

'= 0eP eP



  


D min

L
P  

'= 0eP eP



   


D min

L
P  

'= IP P P 0
u


  


max min

L
 

Introducing the nonnegative slack variables v , v , 

and   the previous KKT conditions can be written as: 

 '2 =y DP e e Iu g    t t               (16)  
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Comparing (16) with (5) we conclude that 
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nP P P . Substituting in the above 

equation we obtain: 
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where, the nonnegative variables fullfil the following 

complementarity conditions: 
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The system of (17) and (18) is a standard Linear 

Complementarity Problem (LCP) which can be written in 

the following form: 
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B. Economic Dispatch with Transmission Lines Losses 

The EDP is considered here with the presence of 

transmission losses. Equation (2) is modified to account 

for such losses as follows: 
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where 
L

P  is the total transmission loss and is given by the 

following equation [1]: 
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Using (7) and (21) in (20) the power balance constraint 

reduces to: 
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where B , 0B , and 00B  represent the B-coefficients of 

transmission loss formula.  

Equation (22) can be written in a more compact form 

as follows: 
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Equality constraint given by (23) can be replaced by 

two inequality constraints 
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The Karush-Kuhn-Tucker (KKT) Lagrangian for the 

dispatch problem defined by the (5), (10), (12), and (24) 

is: 
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where  ,  , u , and y  are the Lagrange multipliers 
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optimality conditions for the above problem are: 
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Introducing the nonnegative slack variables v
 , v

 , 

and   these KKT conditions can be written as: 
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The nonnegative variables fullfil the following 

complementarity conditions:  
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The system of (28) and orthogonality conditions (29) 

form a standard Nonlinear Complementarity Problem 

(NCP) which can be written as follows: 
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III.   NUMERICAL EXAMPLES 

In this section, numerical examples are given to 

illustrate the developed method. The formulated LCP can 

be solved using iterative methods, Newton methods, and 

pivoting methods [20]. Here the LCP problem is solved 

using the MATLAB code pathlcp.m (written and 

maintained jointly by Michael C. Ferris and Madison and 

Todd Munson) [15]. On the other hand the formulated 

Nonlinear Complementarity Problem NCP can be solved 

using different algorithms addressed in the literature, in 

this work the MATLAB LMMCP.M developed and 

written by Kanzow and Petra is used [16]. Kanzow and 

Petra reformulated the NCP to nonlinear Least Square 

method and then they apply a Levenberg-Marquardt-type 

method to find the solution. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

TABLE I.  RESULTS OF FCGA, GAAC, AND LCP FOR 6-UNIT SYSTEM 

Method  Load P1 (MW) P2 (MW) P3 (MW) P4 (MW) P5 (MW) P6 (MW) Ft ($/h) 

FCGA  1800 250.49 215.43 109.92 572.84 325.66 325.66 16585.85 

GAAC  1800 248.14 217.74 75.20 587.8 325.56 325.56 16579.33 

LCP  1800 247.9995 217.7192 75.1816 588.0397 325.53 325.53 16579.33 

 

 

International Journal of Electronics and Electrical Engineering Vol. 5, No. 2, April 2017

©2017 Int. J. Electron. Electr. Eng. 174

A. Examples without Transmission Lines Losses

1) First test system

The first system has six thermal units with the 

following cost functions and their associated constraints 

for each unit: 

2
1 1 1= 0.001562 7.92 561 F P P

1100 600 P

2
2 2 2= 0.00194 7.85 310 F P P

2100 400 P

2
3 3 3= 0.00482 7.97 78 F P P

350 200 P

2
4 4 4= 0.00139 7.06 500 F P P

4140 590 P

2
5 5 5= 0.00184 7.46 295 F P P

5110 400 P

2
6 6 3= 0.00184 7.46 295 F P P

6110 400 P

Table I shows the results of the proposed method 

compared with a fuzzy logic controlled genetic algorithm 

(FCGA) [10] and a genetic algorithm based on arithmetic 

crossover (GAAC) [11] when the load demand was 1800 

MW. Its clearly evident from this table that the solution 

of the LCP results in terms of operation costs is exactly 

the same as that obtained by the GAAC method, while 

the FCGA method produces higher operation cost. In 

general, strong correlation is evident between results 

obtained from all these methods.

2) Second test system

The second test system has thirteen generation units. 

The data of each generation unit are shown in Table II. 

This test system is solved for different values of demand 

load ranging between 550 MW and 2960 MW. The 

individual generated power, minimum fuel cost, the total 

generated power, and the CPU time are shown in Table 

III.



 

TABLE II.  GENERATION UNIT’S DATA 

 Unit No.  
Pmin  

 (MW)  

Pmax  

 (MW)  

  Cost Coefficients  

 a ($/MW2h)  b ($/MWh) c ($/h) 

1  0   680   0.00028   8.1   550  

2  0   360   0.00056   8.1   309  

3  0   360   0.00056   8.1   307  

4  60   180   0.000324   7.74   240  

5  60   180   0.000324   7.74   240  

6  60   180   0.000324   7.74   240  

7  60   180   0.000324   7.74   240  

8  60   180   0.000324   7.74   240  

9  60   180   0.000324   7.74   240  

10  40   120   0.000284   8.6   126  

11  40   120   0.000284   8.6   126  

12  55   120   0.000284   8.6   126  

13  55   120   0.000284   8.6   126  

TABLE III.  RESULTS USING LCP FOR 13-UNIT TEST SYSTEM 

 Pd (MW)   550   1350   1800   2200   2960  

P1  0   64.8369   108.4478  306.2611 9   680 

P2   0   60.8917   106.8636   290.6486   360  

P3   0   60.8917   106.8636   290.6486   360  

P4   60   156.7656   178.1567   179.9999   180  

P5   60   156.7656   178.1567   179.9999   180  

P6   60   156.7656   178.1567   179.9999   180  

P7   60   156.7656   178.1567   179.9999   180  

P8   60   156.7656   178.1567   179.9999   180  

P9   60   156.7656   178.1567   179.9999   180  

P10   40   156.7656   178.1567   179.9999   180  

P11   40   54.9446   102.0583   58.2402   120  

P12   55   54.9446   102.0583   58.2402   120  

P13   55   54.9446   102.0583   58.2402   120  

Total cost ($/h)  7540.0254   13874.4067   17599.2799   20845.1192   27291.1680  

Total P (MW)   550   1349.9997   1800   2200   2960  

CPU time (s)   0.003744 6   0.010296   0.011076   0.010296   0.007332  

 

 
Here, a standard IEEE 30 bus test system is used as a 

third test case. The generation unit’s data in the IEEE 30 

bus test system are given in Table IV. The solution of the 

obtained NCP produces the amount of the generated 

power of each unit that results in the minimum generation 

cost. As mentioned previously the MATLAB program 

(LMMCP.M) written by Kanzow and Petra [16] is used 

to solve the problem. The obtained results for different 

load demand are shown in Table V. 

The results of the proposed formulation of the IEEE 30 

bus system are compared with other methods such as 

Evolutionary Programming IDE [7] and EP-OPF [8], fast 

genetic algorithm approach (FGA) [12], Pattern Search 

(PS) and a combination of Genetic Algorithm and Patern 

Search (GA-PS) [21], and Hybrid Self-adaptive 

Differential Evolution Methods SADE-ALM [22]. The 

load demand was 283.4 MW and the obtained results are 

shown in Table VI. 

TABLE IV.  IEEE 30 BUS TEST SYSTEM GENERATION UNIT’S DATA 

 Unit No.  P2 P2 
  Cost Coefficients  

 a ($/MW2h)  b ($/MWh) c ($/h) 

1  50   200   0.00375   2   0  

2  20   80   0.01750   1.75   0  

3  15   50   0.06250   1   0  

4  10   35   0.00834   3.25   0  

5  10   30   0.02500   3   10  

6  12   40   0.02500   3   0  
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B. Examples with Transmission Losses



 

TABLE V.  RESULTS USING NCP FOR IEEE 30 BUS TEST SYSTEM 

 Pd (MW)   117   170   220   283.4   330   380   435  

P1  50.9986   96.6509   137.0558   176.2631  198.2098   200   200 

P2   20   29.3137   38.8954   48.3829   53.7786   71.7666   80  

P3   15   15   17.7638   20.8706   22.7593   28.4625   49.9150  

P4   10   10   10   22.7129   34.9339   35   35  

P5   10   10   10   12.4533   16.6445   30   30  

P6   12   12   12   12   15.4892   28.4646   40  

Total cost ($/h)  288.2469   429.1655   582.0141   801.7211   976.6427   1186.9352   1404.1008  

Total P (MW)   117.9986   172.9647   225.7149   292.6829   341.8153   393.6937   434.9150  

PL (MW)   0.9986   2.9647   5.7149   9.2829   11.8153   13.6937   14.9150  

CPU time (s)   0.015444   0.012792   0.016536   0.019188   0.021996   0.020748   0.021372  

TABLE VI.  RESULTS OF IDE, EP-OPF, FGA, PS, GA-PS, SADE-ALM AND NCP FOR 6-UNIT SYSTEM 

 Method  
P1 

 (MW)  

P2 

 (MW)  

 P3  

 (MW)  

 P4 

 (MW) 

 P5  

 (MW)  

 P6  

 (MW)  

 Ft 

 (MW)  

PL 

 ($/h) 
 CPU Time  

IDE   181.6329   50.12272   20.15867   10   10.46971   12   794.9129   9.30433   1.466409  

EP-OPF   173.848   49.998   21.386   22.630   12.928   12   802.404   9.4791   NA  

FGA   189.613   47.745   19.5761   13.8752   10   12   799.823   9.6897   0.125  

PS   175.727   48.6812   21.4282   22.8313   12.0667   12   802.015   9.3349   NA  

GA-PS   175.6627   48.6413   21.4222   22.6219   12.3806   12   802.0138   9.3286   NA  

SADE-ALM   176.1522   48.8391   21.5144   22.1299   12.2435   12   802.404   9.491   NA  

NCP   176.2631   48.3829   20.8706   22.7129   12.4533   12   801.7211   9.2829   0.0192  

 

IV. CONCLUSION 

In this paper a new approach for the formulation of the 

economic power dispatch problem is presented. The 

problem without transmission losses taken into account in 

the power balance equation is formulated as Linear 

Complementarity Problem (LCP). Taking into account 

transmission losses the problem gets hard nonlinear, and 

a Nonlinear Complementarity Problem (NCP) is 

formulated to present an efficient solution. Recently 

many efficient algorithms and software have been 

devised and developed. Numerical examples given 

section 3 shows that, in comparison with other methods, 

the presented approach provides an efficient, time saving, 

highly accurate, and cost effective technique with evident 

strong correlation with other well known established 

techniques. 
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