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Abstract—Power flow calculation is a challenge for students 

in power system studying. Many of them are confused by 

the Jacobian matrix used in the Newton-Raphson method. 

The main difficulty lies in the analysis of the power flow 

model and the programming of the Jacobian matrix. In this 

paper, a thorough explanation on the construction of the 

Jacobian matrix is presented. Based on the matrix operation 

and symbol manipulation capacity of MATLAB, three 

approaches of implementation are discussed in detail. In the 

program, loop operation is eliminated in the iteration by 

matrix and symbol operation. Programs via these 

approaches are concise since no element by element 

construction of the Jacobian matrix is required. Therefore, 

the opportunity of successful programing is provided for 

more students. The program via approach 1 is the most 

efficient in sense of running time, while the load flow 

equations are more intuitively expressed via approach 2 or 3. 

The program via approach 3 is the most compact in length, 

but the details of the Jacobian matrix is concealed. It is 

preferable to resorting to approach 3, if the load flow result 

is expected only. And approach 1 is recommanded if we 

intend to observe the details of iteration, including the 

Jacobian matrix. 
 

Index Terms—power system analysis, power flow, Matlab  

 

I. INTRODUCTION 

Power flow calculation is one of the main points in the 

course Power System Analysis and is the basis for the 

successive courses on dynamic analysis and relay 

protection. The task of power flow calculation is to 

determine the voltage distribution and the power 

transmission of the network. The Newton–Raphson 

method is the most common method introduced in the 

textbooks [1].  

Despite that many simulation tools are equipped with 

the function of power flow calculation, it is mandatory 

for undergraduate students majored in Electrical 

Engineering to write a power flow calculation program 

independently. After the principle of the method is 

explained in the classroom, many students find it difficult 

to write the program. According to the teaching 

experience in the last ten years, less than one third of 

them can carry out fluently within two weeks. The main 

difficulty lies in the construction of the notorious 

Jacobian matrix, i.e., determination of the elements of the 
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four block matrices contained in this matrix [2]. How to 

overcome this difficulty is a challenge both for the 

students and the teacher. 

Mathematically, power flow calculation is to solve a 

set of nonlinear algebraic equations [3]. Therefore we can 

resort to mathematical softwares such as Maple, 

Mathematica, etc. MATLAB is a widely used scientific 

analysis tool. It features in powerful matirx and symbol 

manipulation capacity. In fact, it takes Maple as the 

calculation engine. In this paper, we will discuss how to 

make use of the potential of MATLAB in writing a power 

flow calculation program. 

Three approaches will be discussed in detail. The first 

approach uses matrix operation to replace the traditional 

loop operation. In C or C++ environment, manipulation 

of an array or a matrix depends on the usage of pointers 

and unavoidable loop operation which incur many 

misusages. On the contrary, all data processed by 

MATLAB are considered as matrices. It is convienient to 

take a row or a column of a matix as an object in 

operation. Besides, it is also convienient to obtain the 

inverse of a matrix. The second approach uses the symbol 

toolbox to define the equations. That means the 

expression of an equation is considered as symbolic. 

Then the sentences in the program can have the same 

appearance as the equations. And the Jacobian matrix can 

be derived by MATLAB which resorts to MAPLE 

automatically. The third approach uses FSOLVE in the 

Symbolic Math Toolbox to solve the equations. By means 

of FSLOVE, only the symbolic description of the 

equations is required, while the solution of the equations 

is relegated to MATLAB, and the details of Jacobian 

matrix construction are concealed. 

We hope that these three approaches will give some 

aids to the students in successfully writing a program. We 

suggest that the students use the third approach to get a 

solution rapidly, then one of the first two approaches is 

employed to look into the details of calculation, including 

the power mismatch, elements in the Jacobian matrix, etc.  

II. POWER FLOW MODEL 

A. Mathematical Model 

There are three types of buses in a power network, i.e., 

PQ bus, PV bus and slack bus. For each bus, four 

variables are considered, i.e., the voltage V, the phase θ, 
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the net injection real power P and the reactive power Q. 

And for each bus, only two variables are given, and the 

other two have to be determined by calculation. 

Suppose the number of buses is n and the number of 

PQ bus is m, then the number of PV bus is n–m–1, since 

the number of the slack bus is 1 for any network. The 

total number of given P, Q variables is n +m–1 and the 

same number of V, θ variables are unknown. 

Denote the set of PQ, PV and slack bus number as CPQ, 

CPV and CS respectively. Power flow calculation is to 

solve (1) to determine the unknown V, θ variables first 

and then the unknown P, Q variables by (2) [4]. 
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T
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T
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T
, θ=[···,θp,···]

T
, V=[···,Vq,···]

T
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T
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T
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T
, the superscipt T is used to represent 

the transpose of the matrix. The vector form of (1) is 

10 ( ), n mf x x R                             (3) 

B. Computational Model 

The Newton-Raphson method solves equation (1) by 

iterations [5-11]. In the k-th iteration, the correction of 

unkown variables in V and  θ are collected in a vector Δx
k
, 
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where J is the Jacobian matrix. And the variables are 

corrected by  
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The Jacobian matrix J has four block matrices. 
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Many students are confused by the subscript of the 

elements in (8). iiH , iiN , iiK  and iiL  are often named 

as diagonal elements and other elements are named as 

non-diagonal elements. But the subscript does not 

definitely refer to as the location of the element in the 

block matrix. For example, suppose bus 1 is the slack bus, 

then H(1,1), the element in the first-row and first column 

of H, is 
2 2/P   , i.e., H(1,1)=H22. Therefore we should 

carefully determine each element of the Jacobian matrix. 

III. APPROACHES IN POWER FLOW CALCULATION 

PROGRAMMING 

Since the expression for the diagonal and the non-

diagonal elements of each block matrix are different, 

traditionally, we use loop operation to cope with each 

element separately. The program is tedious and often 

results in error. Now we present three efficient 

approaches in programming in the MATLAB 

environment [12-14]. 

A. Approach 1: Matrix Operation 

We first observe the components of the elements in the 

Jacobian matrix and obtain the following results.  

 Hii is the total reactive power transmitted from bus 

i to other buses.  

 Hij is opposite to the reactive power transmitted 

from bus i to bus j.  

 Nii is opposite to the total real power transmitted 

from bus i to other buses.  

 Nij is opposite to the real power transmitted from 

bus i to bus j.  

 Kii is opposite to the total real power transmitted 

from bus i to other buses.  

 Kij is the real power transmitted from bus i to bus j.  

 Lii is opposite to the the total reactive power 

transmitted from bus i to other buses.  

 Lij is opposite to the reactive power transmitted 

from bus i to bus j.  

If the power transmission via each branch is obtained, 

it can be used to construct the block matrices. Notice that 

components Vi×Vj and θij appear in each element in (8), 

element-element product of matices, denoted by  , can 

be used to form these elements.  

The phase difference matrix [θij] and the voltage 

product matrix [ViVj] are obtained as following. 
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The branch power transmission matrix can be 

constructed by (9-1) and (9-2). 

     

 

[ ] cos([ ]) sin([ ])

[ ] sin([ ]) cos([ ])

p i j ij ij

q i j ij ij

S VV G B

S VV G B

 

 

     


    

      (9) 

Both the matrices Sp and Sq are n-dimensional squrare 

matrices. The non-diagnal element Sp (i,j) is the real 

power transmitted from bus i to bus j. The diagnal 

element Sp (i,i) is the real power consumed by the shunt 

impedance connected to bus i. Similarly, Sq(i,j) is the 

reactive power transmitted from bus i to bus j, while Sq(i,i) 

is the reactive power consumed by the shunt impedance 

connected to bus i. 

Combined with the above mentioned observation 

results, the four block matrices H , N , K  and L   can 

be constructed with the elements in Sp and Sq. From the 

node table N, the vector SELp can be defined to collecte 

the bus number of PV and PQ buses. The net real power 

injection of these buses are given, while the same number 

of phases are unknown. We can also define the vector 

SELq to collect the bus number of PQ buses, for which 

the net reactive power injections are given, while the 

same number of voltage amplitudes are unknown. The 

block matrices can be constructed as following. 
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Based on these analyses, the following program are 

presented. N and gen, the node table and the generator 

parameter table, are defined in Appendix A.  

 

 

Comments on the sentences in the program are given 

below. 

Line 1: number of buses. 

Line 2: PV, PQ bus with given P and unknown θ. 

Line 3: PQ bus with given Q and unknown V. 

Line 4: voltage vector. 

Line 5: complex power. 

Line 6: real power mismatch defined in equation (1). 

Line 7: reactive power mismatch defined in (1). 

Line 8-23: determine unknown V and Theta in (1). 

Line 9: construct the phase difference matrix. 

Line 10: construct the voltage product matrix. 

Line 11: real power transmitted via each branch. 

Line 12: reactive power transmitted via each branch. 

Lines 13-15:construct the Jacobian matrix by (9) and (10). 

Line 16: correction. 

Line 17: correct θ. 

Line 18: correct V. 

Line 19: voltage vector. 

Line 20: complex power. 

Line 21: real power mismatch. 

Line 22: reactive power mismatch. 

Line 24-26: determine the output of generators by (2). 

In each iteration, lines 9-22 use matrix operation to 

construct the Jacobian matrix. The loop operation is 

eliminated, which makes the program concise and easy to 

debug. 
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B. Approach 2: Symbol Operation 

Approach 1 is efficient in programming, but it does not 

keep the appearance of the mathematical model (1) in the 

program. Now we discuss an alternate approach, which 

will make the program more intuitive by using the 

symbol operation in MATLAB. 

The symbol operation in MATLAB is carried out by 

Symbolic Math Toolbox (SMT) [9]. SMT calls Maple to 

perform symbol operation on a symbol expression and 

obtain a non-numerical result. Compared with numerical 

operations, no round-off error is introduced, therefore the 

accuracy of the result is guaranteed. 

Symbol variable can be used to represent a number, a 

matrix or an expression, etc. For a pair of symbols f and x, 

standing for a function vector and a variable vector, 

respectively, the Jacobian matrix J can be obtained by 

using command jacobian(·), and the value of the Jacobian 

matrix can be obtained by command eval(·), i.e., 

J=jacobian(f,x),  J_eval=eval(J) 

The task of power flow calculation is reduced to a 

symbolic description of (1). It is implemented by using 

sym to define the variables and the functions as symbols. 

The program is shown below. 

 

 
 

Comments on the sentences in the program: 

Line1: number of buses. 

Line 2: Define the real part of Y as symbols. 

Line 3: Define the imaginary part of Y as symbols. 

Line 4-8: Define voltage amplitude and phase as symbols.   

Line 6: U=[U1,U2,…,Un]. 

Line 7: Theta=[Theta1,Thet2,…,Thetan]. 

Line 9: evaluate given voltages in U. 

Line 10: evaluate given phases in Theta. 

Lines 11-15: define a variable evaluation command 

Line 16: buses with given P.     

Line 17: buses with given Q. 

Lines 18-30: define equation (1) as symbol S.                 

Lines 20-25: symbolic expression of (1) for PQ bus.       

Lines 21-22: symbolic expression for function fi.  

Lines 23-24: symbolic expression for function fn-1+i. 

Lines 26-29: symbolic expression of (1) for PV bus.      

Lines 27-28: symbolic expression for function fn-1+i. 

Line 31: define the symbolic expression of the Jacobian 

matrix. 

Once the symbolic expression of the Jacobian matrix is 

defined, it can be repeatly evaluated, so that corrections 

can be obtained iteratively. In the following program, the 

Jacobian matrix and power mismatch are evaluated in 

lines 36-37 and the correction is obtained in line 38. 

 

Comments of sentences in the program are the 

following. 

Lines 32-33: initial value of u and theta. 

Line 34: evaluate the symbols U and Theta. 

Lines 35-42: iteration by Newton-Raphson method. 

Line 36: evaluate the Jacobian matrix. 

Line 37: evaluate the power mismatch. 

Line 38: correction. 

Line 39: correct u.               

Line 40: correct theta. 

Line 41: evaluate the variables. 

Line 42: end of iteration. 

Lines 43: renew V and θ in N. 

Line 44: voltage vector. 

Line 45: complex power. 

Lines 46-48: determine the output of generators by (2). 
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Despite the longer program, the power flow model (1) 

is expressed intuitively in lines 21-24 and 27-28. And by 

using Jacobian(·), we are free from the details of 

constructing each element of the Jacobian matrix. 

C. Approach 3: Using Algebraic Equation Solver 

A solver for algebraic equations, fsolve(·), is also 

included in the Symbolic Math Toolbox. The definition 

of the equation and initial values of the variables are 

required by fsolve. The usage is depicted in the following 

program. 

 

In the program, 

Line 1: number of buses. 

Line 2: PV bus and PQ bus with given P and unknown θ. 

Line 3: PQ bus with given Q and unknown V. 

Line 4: tolerence and display options. 

Line 5: initial values of V and θ.                      

Line 6: solve equation (1) defined in fu.m by FSOLVE. 

Line 7: renew V in N. 

Line 8: renew θ in N. 

Line 9: voltage vector. 

Line 10: complex power. 

Line 11-13: determine the output of generators by (2).  

The equation is defined in a separate file fu.m. The 

program is shown as following. 

 

In fu.m, 

Line 1: equation description, x=[theta,V]. 

Line 2: unkown voltage amplitudes. 

Line 3: unknown phase. 

Line 4: voltage vector. 

Line 5: power mismatch. 

Line 6: description of equation (1). 

By using the solver, we do not have to construct the 

Jacobian matrix, no loop operation is required in the 

program and only the description of the power flow 

model is required in a separate file, i.e. line 6 in fu.m. The 

concealed iteration within the solver can be displayed if 

the options in line 4 is replaced by the following sentence. 

options=optimset('TolFun',1e-

12,'Display','iter'); %line4 

Now we have present a thorough explanation on the 

construction of the Jacobian matrix when approach 1 is 

addressed. And based on the matrix operation and symbol 

manipulation capacity of MATLAB, three approaches of 

implementation are discussed in detail. They are hoped to 

relieve the burden in programming. 

IV. EXAMPLE 

A. Example System and Load Flow Calculation Result 

Take the WSCC three-machine-nine-bus system as 

example [15]. The system data are depicted in Appendix 

B. The Y matrix is obtained by the following sentences. 

 

In line 1, the shunt elements in N are put into Y. Line 2 

makes transmission lines equivalent to transformers with 

tap ratio k=1. Lines 3-8 read the branch table Br 

described in Appendix A and determine the 

corresponding elements in Y. 

Programs via the three approaches give the same result 

with the tolerance 1e-10, the renewed node table is: 

 

B. Discussion on the Pragrams  

Comparison on the programs is summarized in Table I. 

TABLE I.  COMPARISON OF THE PROGRAMS 

Approach 1 2 3 

Iteration programming required Yes Yes No 

Jacobian matrix programming required Yes No No 

Equ. (1) programming required Yes Yes Yes 

Equ. (2) programming required Yes Yes Yes 

Matrix operation used Yes Yes Yes 

SMT used No Yes Yes 
Program length in lines 26  48  19  

Number of iterations 9 4 4 
Running Time  <1e-6 0.750 0.015 
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The first main difference is the running time. The 

program via approach 1 is the fastest. The running time is 

less than 1e-6 second, almost imperceptible. Although 

iteration is required and each element of the Jacobian 

matrix should be explicitely determined by the program, 

matrix operation based on the analysis of the elements 

results in the most time-efficient program. The program 

via approach 2 is the most time-consuming due to 

frequent symbol processing resort to Maple. The time 

consumption of the program via approach 3 depends on 

the performance of FSOLVE.   

The second main difference is the number of iterations. 

9 iterations are required for the program via approach 1, 

which is more than the 4 iterations required by the 

programs via other approaches. The difference lies in the 

definition of the variables. In approach 1, the variable is 

defined by (4), while for the other approaches, it is 

defined by      

[ , ]k k k Tx V    .                       (11) 

If we adopt this definition, the program via approach 1 

can be modified by changing lines 15 and 18 into the 

following two sentences. 

          
Then the number of iterations is reduced to 4 and the 

running time is also less than 1e-6 second. 

The inner iterations of the program via approach 3 is 

listed below. 

TABLE II.  INNER ITERATIONS OF  PROGRAM VIA APPROACH 3 

Number 
of iter. 

Func-
count 

f(x) Norm of 
step 

First-order 
optimality 

Trust-
region 

radius 

0 15 8.4901 - 40 1 

1 30 6.6197e-2 2.4639e-1 6.62 1 

2 45 1.0617e-5 3.1280e-2 0.0733 1 

3 60 4.1577e-13 4.6340e-4 1.52e-5 1 

4 75 3.3140e-27 1.0347e-7 9.37e-13 1 

V. CONCLUSION 

An explanation on the construction of the Jacobian 

matrix is presented. And three approaches for load flow 

calculation using MATLAB are discussed. In the 

program, loop operation can be eliminated in the iteration 

by matrix and symbol operation. Programs via the three 

approaches are concise since no element by element 

construction of the Jacobian matrix is required. Therefore, 

the opportunity of successful programing is provided for 

more students. The program via approach 1 is the most 

efficient in sense of running time, while the load flow 

equations are more intuitively expressed via approach 2 

or 3. The program via approach 3 is the most compact in 

length, but the details of the Jacobian matrix is concealed. 

It is preferable to resorting to approach 3, if the load flow 

result is expected only. And approach 1 is recommanded 

if we intend to observe the details of iteration, including 

the Jacobian matrix. The approaches can be employed in 

teaching practice and in following the developments of 

power flow calculation methods. 

APPENDIX A  DATA FORMAT 

TABLE A1.  NODE DATA (N) 

Item No. Description Unit 

1 Bus number - 
2 Node type(3:slack bus, 2:PV bus, 0: PQ bus) - 

3 Voltage amplitude pu 
4 Phase degree 

5 Real power load  MW 

6 Reactive power load  MVA 
7 Real power injection MW 

8 Reactive power injection MVA 
9 Shunt conductance pu 

10 Shunt susceptance pu 

TABLE A2.  BRANCH DATA (BR) 

Item 
No. 

Description Unit 

1 From Bus number - 

2 To bus number - 
3 Branch type( 0: transmission line, 1: transformer) - 

4 Resistence Pu 

5 Reactance Pu 
6 Capacitive suceptance Pu 

7 Tap ratio - 

TABLE A3.  GENERATOR PARAMETER (GEN) 

Item No. Description Unit 

1 H*100 MWs/MVA 

2 Power ratings - 
3 Xd’*10000 pu 

4 Generator bus No. - 

APPENDIX B  EXAMPLE SYSTEM DATA, POWER 

BASE=100MVA 

N=[1 3 1.040 0     0   0 71.6 27.0   0  0;  2 2 1.025 0     0   0 163 6.7  0 0; 

3 2 1.025 0     0   0  85   -10.90  0 0;  4 0 1.000 0     0   0     0    0  0 0; 

5 0 1.000 0 125 50  0       0       0 0;  6 0 1.000 0   90 30     0    0  0 0; 

      7 0 1.000 0     0   0  0       0       0 0;  8 0 1.000 0 100 35     0    0  0 0; 

9 0 1.000 0     0   0  0       0       0 0]; 

Br=[1 4 1 0.0000  0.0576  0.000  1;  2 7 1 0.0000  0.0625  0.000  1; 

      3 9 1 0.0000  0.0586  0.000  1;  4 5 0 0.0100  0.0850  0.176  0; 

      4 6 0 0.0170  0.0920  0.158  0;  5 7 0 0.0320  0.1610  0.306  0; 

      6 9 0 0.0390  0.1700  0.358  0;  7 8 0 0.0085  0.0720  0.149  0; 

      8 9 0 0.0119  0.1008  0.209  0]; 

gen=[ 2364 247.5  608 1 0; 640 192.0 1198 2 0; 301 128.0 1813 3  0]; 
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