
Teaching Power Flow Calculation Using

MATLAB

Ningqiang Jiang and Can Huang
Department of Electrical Engineering, Sch. Automation, Nanjing University of Science and Technology, Nanjing,

China

Email: jiangningqiang@hotmail.com, huangcan12@foxmail.com

Abstract—Power flow calculation is a challenge for students

in power system studying. Many of them are confused by

the Jacobian matrix used in the Newton-Raphson method.

The main difficulty lies in the analysis of the power flow

model and the programming of the Jacobian matrix. In this

paper, a thorough explanation on the construction of the

Jacobian matrix is presented. Based on the matrix operation

and symbol manipulation capacity of MATLAB, three

approaches of implementation are discussed in detail. In the

program, loop operation is eliminated in the iteration by

matrix and symbol operation. Programs via these

approaches are concise since no element by element

construction of the Jacobian matrix is required. Therefore,

the opportunity of successful programing is provided for

more students. The program via approach 1 is the most

efficient in sense of running time, while the load flow

equations are more intuitively expressed via approach 2 or 3.

The program via approach 3 is the most compact in length,

but the details of the Jacobian matrix is concealed. It is

preferable to resorting to approach 3, if the load flow result

is expected only. And approach 1 is recommanded if we

intend to observe the details of iteration, including the

Jacobian matrix.

Index Terms—power system analysis, power flow, Matlab

I. INTRODUCTION

Power flow calculation is one of the main points in the

course Power System Analysis and is the basis for the

successive courses on dynamic analysis and relay

protection. The task of power flow calculation is to

determine the voltage distribution and the power

transmission of the network. The Newton–Raphson

method is the most common method introduced in the

textbooks [1].

Despite that many simulation tools are equipped with

the function of power flow calculation, it is mandatory

for undergraduate students majored in Electrical

Engineering to write a power flow calculation program

independently. After the principle of the method is

explained in the classroom, many students find it difficult

to write the program. According to the teaching

experience in the last ten years, less than one third of

them can carry out fluently within two weeks. The main

difficulty lies in the construction of the notorious

Jacobian matrix, i.e., determination of the elements of the

Manuscript received May 3, 2017; revised September 27, 2017.

four block matrices contained in this matrix [2]. How to

overcome this difficulty is a challenge both for the

students and the teacher.

Mathematically, power flow calculation is to solve a

set of nonlinear algebraic equations [3]. Therefore we can

resort to mathematical softwares such as Maple,

Mathematica, etc. MATLAB is a widely used scientific

analysis tool. It features in powerful matirx and symbol

manipulation capacity. In fact, it takes Maple as the

calculation engine. In this paper, we will discuss how to

make use of the potential of MATLAB in writing a power

flow calculation program.

Three approaches will be discussed in detail. The first

approach uses matrix operation to replace the traditional

loop operation. In C or C++ environment, manipulation

of an array or a matrix depends on the usage of pointers

and unavoidable loop operation which incur many

misusages. On the contrary, all data processed by

MATLAB are considered as matrices. It is convienient to

take a row or a column of a matix as an object in

operation. Besides, it is also convienient to obtain the

inverse of a matrix. The second approach uses the symbol

toolbox to define the equations. That means the

expression of an equation is considered as symbolic.

Then the sentences in the program can have the same

appearance as the equations. And the Jacobian matrix can

be derived by MATLAB which resorts to MAPLE

automatically. The third approach uses FSOLVE in the

Symbolic Math Toolbox to solve the equations. By means

of FSLOVE, only the symbolic description of the

equations is required, while the solution of the equations

is relegated to MATLAB, and the details of Jacobian

matrix construction are concealed.

We hope that these three approaches will give some

aids to the students in successfully writing a program. We

suggest that the students use the third approach to get a

solution rapidly, then one of the first two approaches is

employed to look into the details of calculation, including

the power mismatch, elements in the Jacobian matrix, etc.

II. POWER FLOW MODEL

A. Mathematical Model

There are three types of buses in a power network, i.e.,

PQ bus, PV bus and slack bus. For each bus, four

variables are considered, i.e., the voltage V, the phase θ,

290

International Journal of Electronics and Electrical Engineering Vol. 5, No. 5, October 2017

©2017 Int. J. Electron. Electr. Eng.
doi: 10.18178/ijeee.5.5.290-296

the net injection real power P and the reactive power Q.

And for each bus, only two variables are given, and the

other two have to be determined by calculation.

Suppose the number of buses is n and the number of

PQ bus is m, then the number of PV bus is n–m–1, since

the number of the slack bus is 1 for any network. The

total number of given P, Q variables is n +m–1 and the

same number of V, θ variables are unknown.

Denote the set of PQ, PV and slack bus number as CPQ,

CPV and CS respectively. Power flow calculation is to

solve (1) to determine the unknown V, θ variables first

and then the unknown P, Q variables by (2) [4].

1

0

(cos sin),

0

(sin cos),

i i

i i j ij ij ij ij PV PQ

j i

n i i

i i j ij ij ij ij PQ

j i

f P

P V V G B i C C

f Q

Q V V G B i C

 

 



 



  


   



  
    






 (1)

(cos sin),

(sin cos),

i i j ij ij ij ij S

j i

i i j ij ij ij ij PV S

j i

P V V G B i C

Q V V G B i C C

 

 





   



  





 (2)

where Gij, Bij are the real part and the imaginary part of

the (i-j)th element of the conductance matrix Y, i.e.,

11 12 1 11 12 1

21 22 2 21 22 2

1 2 1 2

.

n n

G n n

n n nn n n nn

G G G B B B

G G B B B
Y G jB j

G G G B B B

   
   
      
   
   
   

Denote x=[θ
T
,V

T
]

T
, θ=[···,θp,···]

T
, V=[···,Vq,···]

T
,

PV PQp C C ,
PQq C and f=[ΔP,ΔQ]

T
, ΔP=[f1,···,fn-1]

T
,

ΔQ=[fn,···,fn+m-1]
T
, the superscipt T is used to represent

the transpose of the matrix. The vector form of (1) is

10 (), n mf x x R    (3)

B. Computational Model

The Newton-Raphson method solves equation (1) by

iterations [5-11]. In the k-th iteration, the correction of

unkown variables in V and θ are collected in a vector Δx
k
,

[, /]k k k k Tx V V    (4)

It is approximated by

-1J ()
k

k k

x
x f x   (5)

where J is the Jacobian matrix. And the variables are

corrected by

+1k k k     , +1k k kV V V   . (6)

The Jacobian matrix J has four block matrices.

(-1) (-1) (-1)

(+ -1) (+ -1)

(-1)

=
n n n m

n m n m

m n m m

H N
J

K L

 



 

 
 
  

 (7)

where , , ,
P P Q Q

H N K L
V V 

   
   

   
, and

the elements in them are

,

,

(sin cos), (sin cos)

(cos sin), (cos sin)

(cos

i
iii

ij
i

j

i j ij ij ij ij
i j ij ij ij ij

j i j i

i
iii i ij j

i
j

i j ij ij ij ij
i j ij ij ij ij

j i j i

i
ii

i

i j ij ij

P PH H

V V G B VV G B

P PN V N VV V

V V G B VV G B

Q
K

V V G

 

   

   





 

 

   

    

   

     






 





,

,

sin), (cos sin)

(sin cos), (sin cos)

i
ij

j

ij ij
i j ij ij ij ij

j i j i

i
iii i ij j

i
j

i j ij ij ij ij
i j ij ij ij ij

j i j i

Q
K

B VV G B

Q PL V L VV

V V G B VV G B



  



   

 

 















 


  


    
     





 (8)

Many students are confused by the subscript of the

elements in (8). iiH , iiN , iiK and iiL are often named

as diagonal elements and other elements are named as

non-diagonal elements. But the subscript does not

definitely refer to as the location of the element in the

block matrix. For example, suppose bus 1 is the slack bus,

then H(1,1), the element in the first-row and first column

of H, is
2 2/P   , i.e., H(1,1)=H22. Therefore we should

carefully determine each element of the Jacobian matrix.

III. APPROACHES IN POWER FLOW CALCULATION

PROGRAMMING

Since the expression for the diagonal and the non-

diagonal elements of each block matrix are different,

traditionally, we use loop operation to cope with each

element separately. The program is tedious and often

results in error. Now we present three efficient

approaches in programming in the MATLAB

environment [12-14].

A. Approach 1: Matrix Operation

We first observe the components of the elements in the

Jacobian matrix and obtain the following results.

 Hii is the total reactive power transmitted from bus

i to other buses.

 Hij is opposite to the reactive power transmitted

from bus i to bus j.

 Nii is opposite to the total real power transmitted

from bus i to other buses.

 Nij is opposite to the real power transmitted from

bus i to bus j.

 Kii is opposite to the total real power transmitted

from bus i to other buses.

 Kij is the real power transmitted from bus i to bus j.

 Lii is opposite to the the total reactive power

transmitted from bus i to other buses.

 Lij is opposite to the reactive power transmitted

from bus i to bus j.

If the power transmission via each branch is obtained,

it can be used to construct the block matrices. Notice that

components Vi×Vj and θij appear in each element in (8),

element-element product of matices, denoted by  , can

be used to form these elements.

The phase difference matrix [θij] and the voltage

product matrix [ViVj] are obtained as following.

291

International Journal of Electronics and Electrical Engineering Vol. 5, No. 5, October 2017

©2017 Int. J. Electron. Electr. Eng.

   1 2 1 2

12 1

21 2

1 2

, , , [1,1, ,1] , , , [1,1, ,1]

0

0

0

T
n n

T T

ij n n

n

n

n n

      

 

 

 

      
         

      

 
 
 
 
 
 

   1 2 1 2

2

1 1 2 1

2

2 1 2 2

2

1 2

, , , [1,1, ,1] , , , [1,1, ,1]

T
n n

T T

i j n n

n

n

n n n

VV V V V V V V

V VV VV

V V V V V

V V V V V

      
         

      

 
 
 
 
 
 

The branch power transmission matrix can be

constructed by (9-1) and (9-2).

  

 

[] cos([]) sin([])

[] sin([]) cos([])

p i j ij ij

q i j ij ij

S VV G B

S VV G B

 

 

     


    

 (9)

Both the matrices Sp and Sq are n-dimensional squrare

matrices. The non-diagnal element Sp (i,j) is the real

power transmitted from bus i to bus j. The diagnal

element Sp (i,i) is the real power consumed by the shunt

impedance connected to bus i. Similarly, Sq(i,j) is the

reactive power transmitted from bus i to bus j, while Sq(i,i)

is the reactive power consumed by the shunt impedance

connected to bus i.

Combined with the above mentioned observation

results, the four block matrices H , N , K and L can

be constructed with the elements in Sp and Sq. From the

node table N, the vector SELp can be defined to collecte

the bus number of PV and PQ buses. The net real power

injection of these buses are given, while the same number

of phases are unknown. We can also define the vector

SELq to collect the bus number of PQ buses, for which

the net reactive power injections are given, while the

same number of voltage amplitudes are unknown. The

block matrices can be constructed as following.

- +diag(sum())

- -diag(sum())

-diag(sum())

- -diag(sum())

T

q q

T

p p

T

p p

T

q q

H S S

N S S

K S S

L S S

 










 (10-1)

p p

p q

q p

q q

(SEL ,SEL)

(SEL ,SEL)

(SEL ,SEL)

(SEL ,SEL)

H H

N N

K K

L L

 










 (10-2)

Based on these analyses, the following program are

presented. N and gen, the node table and the generator

parameter table, are defined in Appendix A.

Comments on the sentences in the program are given

below.

Line 1: number of buses.

Line 2: PV, PQ bus with given P and unknown θ.

Line 3: PQ bus with given Q and unknown V.

Line 4: voltage vector.

Line 5: complex power.

Line 6: real power mismatch defined in equation (1).

Line 7: reactive power mismatch defined in (1).

Line 8-23: determine unknown V and Theta in (1).

Line 9: construct the phase difference matrix.

Line 10: construct the voltage product matrix.

Line 11: real power transmitted via each branch.

Line 12: reactive power transmitted via each branch.

Lines 13-15:construct the Jacobian matrix by (9) and (10).

Line 16: correction.

Line 17: correct θ.

Line 18: correct V.

Line 19: voltage vector.

Line 20: complex power.

Line 21: real power mismatch.

Line 22: reactive power mismatch.

Line 24-26: determine the output of generators by (2).

In each iteration, lines 9-22 use matrix operation to

construct the Jacobian matrix. The loop operation is

eliminated, which makes the program concise and easy to

debug.

292

International Journal of Electronics and Electrical Engineering Vol. 5, No. 5, October 2017

©2017 Int. J. Electron. Electr. Eng.

B. Approach 2: Symbol Operation

Approach 1 is efficient in programming, but it does not

keep the appearance of the mathematical model (1) in the

program. Now we discuss an alternate approach, which

will make the program more intuitive by using the

symbol operation in MATLAB.

The symbol operation in MATLAB is carried out by

Symbolic Math Toolbox (SMT) [9]. SMT calls Maple to

perform symbol operation on a symbol expression and

obtain a non-numerical result. Compared with numerical

operations, no round-off error is introduced, therefore the

accuracy of the result is guaranteed.

Symbol variable can be used to represent a number, a

matrix or an expression, etc. For a pair of symbols f and x,

standing for a function vector and a variable vector,

respectively, the Jacobian matrix J can be obtained by

using command jacobian(·), and the value of the Jacobian

matrix can be obtained by command eval(·), i.e.,

J=jacobian(f,x), J_eval=eval(J)

The task of power flow calculation is reduced to a

symbolic description of (1). It is implemented by using

sym to define the variables and the functions as symbols.

The program is shown below.

Comments on the sentences in the program:

Line1: number of buses.

Line 2: Define the real part of Y as symbols.

Line 3: Define the imaginary part of Y as symbols.

Line 4-8: Define voltage amplitude and phase as symbols.

Line 6: U=[U1,U2,…,Un].

Line 7: Theta=[Theta1,Thet2,…,Thetan].

Line 9: evaluate given voltages in U.

Line 10: evaluate given phases in Theta.

Lines 11-15: define a variable evaluation command

Line 16: buses with given P.

Line 17: buses with given Q.

Lines 18-30: define equation (1) as symbol S.

Lines 20-25: symbolic expression of (1) for PQ bus.

Lines 21-22: symbolic expression for function fi.

Lines 23-24: symbolic expression for function fn-1+i.

Lines 26-29: symbolic expression of (1) for PV bus.

Lines 27-28: symbolic expression for function fn-1+i.

Line 31: define the symbolic expression of the Jacobian

matrix.

Once the symbolic expression of the Jacobian matrix is

defined, it can be repeatly evaluated, so that corrections

can be obtained iteratively. In the following program, the

Jacobian matrix and power mismatch are evaluated in

lines 36-37 and the correction is obtained in line 38.

Comments of sentences in the program are the

following.

Lines 32-33: initial value of u and theta.

Line 34: evaluate the symbols U and Theta.

Lines 35-42: iteration by Newton-Raphson method.

Line 36: evaluate the Jacobian matrix.

Line 37: evaluate the power mismatch.

Line 38: correction.

Line 39: correct u.

Line 40: correct theta.

Line 41: evaluate the variables.

Line 42: end of iteration.

Lines 43: renew V and θ in N.

Line 44: voltage vector.

Line 45: complex power.

Lines 46-48: determine the output of generators by (2).

293

International Journal of Electronics and Electrical Engineering Vol. 5, No. 5, October 2017

©2017 Int. J. Electron. Electr. Eng.

Despite the longer program, the power flow model (1)

is expressed intuitively in lines 21-24 and 27-28. And by

using Jacobian(·), we are free from the details of

constructing each element of the Jacobian matrix.

C. Approach 3: Using Algebraic Equation Solver

A solver for algebraic equations, fsolve(·), is also

included in the Symbolic Math Toolbox. The definition

of the equation and initial values of the variables are

required by fsolve. The usage is depicted in the following

program.

In the program,

Line 1: number of buses.

Line 2: PV bus and PQ bus with given P and unknown θ.

Line 3: PQ bus with given Q and unknown V.

Line 4: tolerence and display options.

Line 5: initial values of V and θ.

Line 6: solve equation (1) defined in fu.m by FSOLVE.

Line 7: renew V in N.

Line 8: renew θ in N.

Line 9: voltage vector.

Line 10: complex power.

Line 11-13: determine the output of generators by (2).

The equation is defined in a separate file fu.m. The

program is shown as following.

In fu.m,

Line 1: equation description, x=[theta,V].

Line 2: unkown voltage amplitudes.

Line 3: unknown phase.

Line 4: voltage vector.

Line 5: power mismatch.

Line 6: description of equation (1).

By using the solver, we do not have to construct the

Jacobian matrix, no loop operation is required in the

program and only the description of the power flow

model is required in a separate file, i.e. line 6 in fu.m. The

concealed iteration within the solver can be displayed if

the options in line 4 is replaced by the following sentence.

options=optimset('TolFun',1e-

12,'Display','iter'); %line4

Now we have present a thorough explanation on the

construction of the Jacobian matrix when approach 1 is

addressed. And based on the matrix operation and symbol

manipulation capacity of MATLAB, three approaches of

implementation are discussed in detail. They are hoped to

relieve the burden in programming.

IV. EXAMPLE

A. Example System and Load Flow Calculation Result

Take the WSCC three-machine-nine-bus system as

example [15]. The system data are depicted in Appendix

B. The Y matrix is obtained by the following sentences.

In line 1, the shunt elements in N are put into Y. Line 2

makes transmission lines equivalent to transformers with

tap ratio k=1. Lines 3-8 read the branch table Br

described in Appendix A and determine the

corresponding elements in Y.

Programs via the three approaches give the same result

with the tolerance 1e-10, the renewed node table is:

B. Discussion on the Pragrams

Comparison on the programs is summarized in Table I.

TABLE I. COMPARISON OF THE PROGRAMS

Approach 1 2 3

Iteration programming required Yes Yes No

Jacobian matrix programming required Yes No No

Equ. (1) programming required Yes Yes Yes

Equ. (2) programming required Yes Yes Yes

Matrix operation used Yes Yes Yes

SMT used No Yes Yes
Program length in lines 26 48 19

Number of iterations 9 4 4
Running Time <1e-6 0.750 0.015

294

International Journal of Electronics and Electrical Engineering Vol. 5, No. 5, October 2017

©2017 Int. J. Electron. Electr. Eng.

The first main difference is the running time. The

program via approach 1 is the fastest. The running time is

less than 1e-6 second, almost imperceptible. Although

iteration is required and each element of the Jacobian

matrix should be explicitely determined by the program,

matrix operation based on the analysis of the elements

results in the most time-efficient program. The program

via approach 2 is the most time-consuming due to

frequent symbol processing resort to Maple. The time

consumption of the program via approach 3 depends on

the performance of FSOLVE.

The second main difference is the number of iterations.

9 iterations are required for the program via approach 1,

which is more than the 4 iterations required by the

programs via other approaches. The difference lies in the

definition of the variables. In approach 1, the variable is

defined by (4), while for the other approaches, it is

defined by

[,]k k k Tx V    . (11)

If we adopt this definition, the program via approach 1

can be modified by changing lines 15 and 18 into the

following two sentences.

Then the number of iterations is reduced to 4 and the

running time is also less than 1e-6 second.

The inner iterations of the program via approach 3 is

listed below.

TABLE II. INNER ITERATIONS OF PROGRAM VIA APPROACH 3

Number
of iter.

Func-
count

f(x) Norm of
step

First-order
optimality

Trust-
region

radius

0 15 8.4901 - 40 1

1 30 6.6197e-2 2.4639e-1 6.62 1

2 45 1.0617e-5 3.1280e-2 0.0733 1

3 60 4.1577e-13 4.6340e-4 1.52e-5 1

4 75 3.3140e-27 1.0347e-7 9.37e-13 1

V. CONCLUSION

An explanation on the construction of the Jacobian

matrix is presented. And three approaches for load flow

calculation using MATLAB are discussed. In the

program, loop operation can be eliminated in the iteration

by matrix and symbol operation. Programs via the three

approaches are concise since no element by element

construction of the Jacobian matrix is required. Therefore,

the opportunity of successful programing is provided for

more students. The program via approach 1 is the most

efficient in sense of running time, while the load flow

equations are more intuitively expressed via approach 2

or 3. The program via approach 3 is the most compact in

length, but the details of the Jacobian matrix is concealed.

It is preferable to resorting to approach 3, if the load flow

result is expected only. And approach 1 is recommanded

if we intend to observe the details of iteration, including

the Jacobian matrix. The approaches can be employed in

teaching practice and in following the developments of

power flow calculation methods.

APPENDIX A DATA FORMAT

TABLE A1. NODE DATA (N)

Item No. Description Unit

1 Bus number -
2 Node type(3:slack bus, 2:PV bus, 0: PQ bus) -

3 Voltage amplitude pu
4 Phase degree

5 Real power load MW

6 Reactive power load MVA
7 Real power injection MW

8 Reactive power injection MVA
9 Shunt conductance pu

10 Shunt susceptance pu

TABLE A2. BRANCH DATA (BR)

Item
No.

Description Unit

1 From Bus number -

2 To bus number -
3 Branch type(0: transmission line, 1: transformer) -

4 Resistence Pu

5 Reactance Pu
6 Capacitive suceptance Pu

7 Tap ratio -

TABLE A3. GENERATOR PARAMETER (GEN)

Item No. Description Unit

1 H*100 MWs/MVA

2 Power ratings -
3 Xd’*10000 pu

4 Generator bus No. -

APPENDIX B EXAMPLE SYSTEM DATA, POWER

BASE=100MVA

N=[1 3 1.040 0 0 0 71.6 27.0 0 0; 2 2 1.025 0 0 0 163 6.7 0 0;

3 2 1.025 0 0 0 85 -10.90 0 0; 4 0 1.000 0 0 0 0 0 0 0;

5 0 1.000 0 125 50 0 0 0 0; 6 0 1.000 0 90 30 0 0 0 0;

 7 0 1.000 0 0 0 0 0 0 0; 8 0 1.000 0 100 35 0 0 0 0;

9 0 1.000 0 0 0 0 0 0 0];

Br=[1 4 1 0.0000 0.0576 0.000 1; 2 7 1 0.0000 0.0625 0.000 1;

 3 9 1 0.0000 0.0586 0.000 1; 4 5 0 0.0100 0.0850 0.176 0;

 4 6 0 0.0170 0.0920 0.158 0; 5 7 0 0.0320 0.1610 0.306 0;

 6 9 0 0.0390 0.1700 0.358 0; 7 8 0 0.0085 0.0720 0.149 0;

 8 9 0 0.0119 0.1008 0.209 0];

gen=[2364 247.5 608 1 0; 640 192.0 1198 2 0; 301 128.0 1813 3 0];

ACKNOWLEDGMENT

This work was supported by National Science

Foundation of China, grant no. 51577092.

REFERENCES

[1] J. Arrillaga, C. P. Arnold, and B. J. Harker, Computer Modelling

of Electrical Power Systems, New York: John Willey & sons,

1983.

295

International Journal of Electronics and Electrical Engineering Vol. 5, No. 5, October 2017

©2017 Int. J. Electron. Electr. Eng.

[2] A. R. Bergen and V. Vittal. Power System Analysis, 2nd ed., New
York: Prentice Hall, 2000.

[3] P. Kundur, Power System Stability and Control, New York: Mc

Graw-Hill, 1994.
[4] H. Saadat, Power System Analysis, New York: McGraw-Hill,

1999.
[5] W. F. Tinney and C. E. Hart, “Power flow solution by Newton’s

method,” IEEE Transactions on Power System and Apparatus, vol.

[6] V. H. Quintana and N. Muller, “Studies of load flow method in

polar and rectangular coordinates,” Electric Power System
Research,

[7] V. M. da Costa, N. Martins, and J. L. Pereira, “Developments in

the Newton Raphson power flow formulation based on current
injections,” IEEE Transactions on Power Systems, vol. 14, pp.

1320-1326, 1999.
[8] M. E. El-Hawary, Introduction to Electrical Power Systems, New

York: John Wiley & Sons, 2008.

[9] J. F. Gutierrez, M. F. Bedrinana, and C. A. Castro, “Critical
comparison of robust load flow methods for ill-conditioned

systems,” in Proc. IEEE Int. Conf. on Power System Technology,

[10] D. P. Kothari and I. J. Nagrath, Modern Power System Analysis,

New York: McGraw Hill, 2008.
[11] O. L. Elgerd, Electric Energy Systems Theory: An Introduction,

2nd ed., Mc-Graw-Hill, 2012.

[12] Simulink User’s Guide, The Mathworks, Natick, MA, 1999.
[13] Power System Blockset User’s Guide, The Mathworks, Natick,

MA, 1998.

[14] B. Aroop, B. Satyajit, and H. Sanjib, “Power flow analysis on
IEEE 57 bus system using Mathlab,” International Journal of

Engineering Research & Technology, p. 3, 2014.
[15] P. M. Anderson and A. A. Fouad, Power System Control and

Stability, Ames, IA: Iowa State University Press, 1977.

Ningqiang Jiang received the B.E. degree from Zhejiang University,
Hangzhou, China, in 1992, and the Ph.D. degree from Southeast

University, Nanjing China, in 2005.He is associate professor in the

Department of Electrical Engineering, at the School of Automation,
Nanjing University of Science and Technology, Nanjing, China. His

research interest is in power system stability and control and the
application of power electronics in power systems. Dr. Jiang is an IEEE

member as well as an IEEE PES member.

Can Huang received the B.E. degree from Nanjing Normal University,
Nanjing, China, in 2015. He is working toward a Master’s degree in the

Department of Electrical Engineering, at the School of Automation,

Nanjing University of Science and Technology, Nanjing, China. His
research direction is in power system modeling and stability analysis.

296

International Journal of Electronics and Electrical Engineering Vol. 5, No. 5, October 2017

©2017 Int. J. Electron. Electr. Eng.

86, pp. 1449-1460, 1967.

vol. 20, pp. 225-235, 1991.

Trondheim , Norway, 2011, pp. 19-23.

