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Abstract—Internal Short Circuit (ISCr) is main cause of 

dangerous incidents such as thermal runaway in a lithium-

ion battery. However, if constant currents are applied to the 

battery as a load current, existing model-based methods 

have difficulty in estimating parameters in an equivalent 

circuit model of the battery accurately, resulting in problem 

of detection of the ISCr. In this paper, we propose a method 

for detecting the ISCr in the lithium-ion battery using the 

Convolutional Neural Networks (CNN). Data pre-processing 

is conducted to enlarge the effect of ISCr in terminal 

voltages of the battery, and then the CNN algorithm is used 

to classify the degree of the ISCr faults. Dataset for the CNN 

is obtained from a MATLAB/Simulink battery model. The 

proposed method shows classification result with high 

accuracy of 96.0% and consequently contributes to 

detecting the ISCr in the battery early.  

 

Index Terms—internal short circuit, early detection, 

convolutional neural networks, data pre-processing, 

lithium-ion battery 

 

I. INTRODUCTION 

Demand of lithium-ion batteries for the electric vehicle 

[1] and the grid system [2] exceeds our expectation recent 

years due to their high power density and a long cycle life 

[3]. However, the safety problem about the lithium-ion 

batteries is still of concern, because of hazardous 

incidents such as battery failures of both the Boeing 787-

7 [4] and the Samsung Note7 [5]. Internal Short Circuit 

(ISCr) in the battery is main cause of these incidents, and 

thermal runaway with fire and explosion may be caused 

by the ISCr when magnitude of ISCr resistance (𝑅𝐼𝑆𝐶𝑟) is 

lower or equal to 0.27 Ω [6]. Thus, the soft ISCr which 

has a large magnitude of 𝑅𝐼𝑆𝐶𝑟  must be detected to 

prevent the thermal runaway.  

Recently, studies for detecting the ISCr in the battery 

have been introduced [7]-[10]. Thresholds, such as 

decrease in terminal voltage and increment in temperature 

caused by the ISCr, were obtained to detect the ISCr [7]. 

However, the thresholds may not be extracted when the 

batteries with the soft ISCr are used in prior tests of the 
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ISCr faults. Besides the method based on thresholds, 

methods for detecting the ISCr with an equivalent circuit 

model of the battery have been suggested [8]-[10]. After 

estimating parameters in the equivalent circuit model 

without the 𝑅𝐼𝑆𝐶𝑟  and the energy balance equation, the 

variations of the estimated parameters were used to detect 

the ISCr [8]. But, only one type of current profile was 

used to verify this method and the variations obtained 

with other current profiles may not be identical, leading 

to difficulty in detecting the ISCr. Therefore, the 𝑅𝐼𝑆𝐶𝑟 , 

which directly has information about fault degree of the 

ISCr, was estimated with the equivalent circuit model 

with the 𝑅𝐼𝑆𝐶𝑟  to detect the ISCr from two different 

current profiles [9]. However, the low accuracy of 

estimated 𝑅𝐼𝑆𝐶𝑟  was problem of this method. The 

estimates of 𝑅𝐼𝑆𝐶𝑟 in the equivalent circuit model of the 

battery with ISCr were used to obtain self-discharge 

currents flowing through the 𝑅𝐼𝑆𝐶𝑟 , and then the model 

was updated with the self-discharge currents. Then, the 

next estimated 𝑅𝐼𝑆𝐶𝑟  became accurate and was used to 

detect the soft ISCr correctly [10]. These three methods 

based on the equivalent circuit model have a common 

constraint condition: the current whose magnitude varies 

frequently enough to estimate the parameters in the 

model accurately must be applied to the battery; i.e., if 

constant current is used as a load current, the parameters 

such as Open Circuit Voltage (OCV) and internal 

resistance in the model cannot be estimated accurately, 

resulting in problem of detection of the ISCr.   

For this reason, a method for detecting the ISCr in the 

lithium-ion battery discharged by the constant current is 

proposed using the Convolutional Neural Networks 

(CNN). To obtain classification results with high 

accuracy, pre-processing is conducted with input data of 

the CNN. Due to the high magnitudes of constant 

currents, the self-discharge phenomenon is not observed 

clearly in terminal voltages of the battery, which are 

acquired from various soft ISCr faults and constant 

currents. The effect of the ISCr in the battery is described 

distinctly in input data of the CNN, because elements 

related with the constant currents are removed in the data 

pre-processing. As a result, the diverse soft ISCr faults 
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can be classified accurately enough to represent the fault 

degree of the ISCr. To verify the proposed method, the 

equivalent circuit model of the battery with ISCr was 

configured in MATLAB/Simulink, and then the 

simulation data of terminal voltages and constant currents 

were used as the input data for the CNN. 

In the remainder of the paper, the dataset from 

configuration of simulation is introduced in Section 2, the 

proposed algorithm is explained in Section 3, the results 

are discussed in Section 4 and the conclusion are 

presented in Section 5.  

II. DATASET 

A. Simulation Configuration 

To configure the simulation model of the battery with 

ISCr in MATLAB/Simulink [11], the first-order RC 

model [12] of the battery was used. The normal battery 

(INR 18650-20R, 2.0 Ah) was discharged with a current 

profile of dynamic stress test and then measurement data 

of terminal voltages and load currents were used to 

estimate the parameters, needed to compose the 

simulation model, using the recursive least squares 

algorithm [13]. In addition, prior tests for obtaining 

capacity and relationship between OCV and state of 

charge (SOC) were conducted, and these two data were 

also utilized in the simulation model. 

B. Data Preparation 

The constant currents whose magnitude were in 

between 1.1C and 3C (2.2 A ~ 6 A) were applied to the 

simulation model with various soft ISCr fault conditions, 

such as normal, ISCr 50 Ω, ISCr 30 Ω, ISCr 20 Ω, ISCr 

10  Ω and ISCr 5 Ω, for obtaining the terminal voltages. 

When the battery simulator with 100% SOC was 

discharged with a constant current as the load current, the 

terminal voltages and the load currents were stored until 

the voltage reaches 3.222 V (OCV at 0% SOC). After the 

voltage is lower than 3.222 V, the stored data of terminal 

voltage and current were defined as 0 to conduct the zero-

padding; this process make the same column size of input 

data (2 × 3,600) for both ISCr fault cases and a normal 

case, where the first row of input data is the load current 

and the second row is the terminal voltage. The number 

of constant currents with different magnitudes was 1,000 

and the number of terminal voltages was also 1,000 for 

each six different cases (a normal case and five ISCr fault 

cases); the size of input data was 6,000 × 2 × 3,600 used 

in the CNN. The training data (800 × 2 × 3,600) were 

extracted randomly from the data (1,000 × 2 × 3,600) for 

each six different cases, while the remainder of data (200 

× 2 × 3,600) were used as the verification data.  
A labelling process was necessary for the supervised 

learning of the CNN model. The input data for the normal 

case were labelled as class 1, while other input data for 

the five fault cases were labelled from class 2 to class 6 in 

accordance with the ISCr fault conditions.  

III. METHOD DESCRIPTION 

A. Architecture of CNN 

As a particular kind of deep neural networks, the CNN 

algorithm, which consists of both some filter stages to 

extract features from the input data effectively and a 

classification stage, is used in image processing [14] and 

fault diagnosis [15]. The filter stage contains the pooling 

layer and the convolutional layer denoted by Conv (k × l 

@ m), where k × l is filter size and m is the number of 

filters. In this study, the max pooling layer is used in the 

CNN model. The classification stage is composed of 

several fully-connected layers denoted by fc(n), where n 

is the number of neurons. The rectified linear units 

(ReLU) [16] is connected with every convolutional and 

fully-connected layers, and the dropout [17] with 

probability 0.6 is used after the fully-connected layers to 

reduce the over-fitting problem.  

To classify the fault degree of ISCr in the battery cell, 

the proposed CNN model is used and depicted in Fig. 1. 

The proposed model contains 32 convolutional layers, 8 

pooling layers, a fully-connected layer and a softmax 

layer, denoted by Softmax. The max pooling layer is 

connected after 4 convolutional layers in the CNN model. 

 

Figure 1. Architecture of proposed CNN model. 

International Journal of Electronics and Electrical Engineering Vol. 7, No. 1, March 2019

7©2019 Int. J. Electron. Electr. Eng.



B. Preprocessing of Input Data 

The equivalent circuit model of the battery cell is 

shown in Fig. 2, and the 𝑅𝐼𝑆𝐶𝑟 is connected with the first-

order RC model in parallel to represent the ISCr, where 

the OCV is 𝑉𝑜𝑐 , internal resistance is 𝑅0, RC network is 

composed of a resistance 𝑅1 and a capacitor 𝐶1. Due to 

the ISCr, the load current 𝐼𝐿  is divided into two currents; 

the self-discharge current is 𝐼2 flowing through the 𝑅𝐼𝑆𝐶𝑟 

and the other current 𝐼1 is remainder of the current. 

 

Figure 2. Equivalent circuit model of battery cell with ISCr. 

The terminal voltage 𝑉𝑡 is represented with (1), where 

the voltage of the RC network is 𝑉𝑅𝐶 . To reflect the self-

discharge phenomenon caused by the ISCr in the 𝑉𝑡 

clearly, terms which are related with the 𝐼𝐿  having high 

C-rate in (1) should be removed from the 𝑉𝑡. The OCV 

for the 𝐼𝐿  is eliminated in the 𝑉𝑜𝑐  necessarily because the 

first term 𝑉𝑜𝑐  accounts for a great part of the 𝑉𝑡. 

𝑉𝑡 = 𝑉𝑂𝐶 + 𝑅0(𝐼𝐿 − 𝐼2) + 𝑉𝑅𝐶  (1) 

When the ISCr occurs in the battery, the SOC of the 

faulted cell ( 𝑆𝑂𝐶𝑓 ) is represented with the Coulomb 

counting method [18] in (2), where 𝐶𝑚𝑎𝑥  is capacity of 

the battery, 𝑘 is sample index and η is the charging and 

discharging efficiency. The SOC of the normal cell 

(𝑆𝑂𝐶𝑛) is equal to 𝑆𝑂𝐶𝑓(0) +
η

𝐶𝑚𝑎𝑥
∑ 𝐼𝐿(𝑛)𝑘−1

𝑛=1  in (2), and 

the 𝑆𝑂𝐶𝑛  can be calculated with both the 𝑆𝑂𝐶𝑓(0)  and 

the 𝐼𝐿(𝑛). 

𝑆𝑂𝐶𝑓(𝑘) = 𝑆𝑂𝐶𝑓(0) +
𝜂

𝐶𝑚𝑎𝑥

∑ 𝐼𝐿(𝑛)

𝑘−1

𝑛=1

−
𝜂

𝐶𝑚𝑎𝑥

∑ 𝐼2(𝑛)

𝑘−1

𝑛=1

 

 

(2) 

To obtain the OCV of the normal cell (𝑂𝐶𝑉𝑛 ), the 

relation between OCV and SOC of the battery is used and 

shown in Fig. 3. If the relation in a specific range from 

100% SOC to 50% SOC is assumed to be linear equation, 

the function 𝑔 can describe the relation in (3), where 𝑎 

and 𝑏 are two coefficients 

𝑂𝐶𝑉𝑛(𝑘) = 𝑔(𝑆𝑂𝐶𝑛(𝑘)) = 𝑎𝑆𝑂𝐶𝑛(𝑘) + 𝑏 (3)
 

 

 

 

Figure 3. Relation between OCV and SOC. 

Subsequently, terminal voltage (𝑉𝑡,𝑝𝑟𝑒) obtained from 

the data pre-processing is calculated with (4), and in 

addition, the 𝑅0𝐼𝐿  is also subtracted from the 𝑉𝑡. In case 

of normal battery, if the 𝑂𝐶𝑉𝑛 is subtracted from the 𝑉𝑡, 

the 𝑉𝑡,𝑝𝑟𝑒  does not decrease nearly. Therefore, the 80% 

amount of 𝑂𝐶𝑉𝑛 is removed in the 𝑉𝑡. During conducting 

the data pre-processing in the specific range, the 𝑉𝑡,𝑝𝑟𝑒 

and 𝐼𝐿  are stored as training and verification data for the 

CNN until the 𝑉𝑡,𝑝𝑟𝑒  is lower than a certain value. The 

remainder data of both 𝑉𝑡,𝑝𝑟𝑒 and 𝐼𝐿  are defined as 0 after 

the 𝑉𝑡,𝑝𝑟𝑒 reaches the particular value. 

𝑉𝑡,𝑝𝑟𝑒(𝑘) = 𝑉𝑡(𝑘) − 𝑅0𝐼𝐿(𝑘)

− (𝑔(𝑆𝑂𝐶𝑛(𝑘)) − 𝑏) ∙ 0.8 

(4) 

 

Figure 4. New sample index obtained from quadratic functional. 

After obtaining the 𝑉𝑡,𝑝𝑟𝑒  and analysing it, the 

percentage of zero-padding in the 𝑉𝑡,𝑝𝑟𝑒s for the diverse 

ISCr cases is large; to overcome this problem, the 

terminal voltage ( 𝑉𝑡,𝑠𝑎𝑚 ) sampled with a new sample 

index 𝑢 is obtained from the quadratic functional ℎ in (5) 

and Fig. 4. The 𝐼𝐿  is also extracted by the same sampling 

method. 

𝑢 =  ℎ(𝑘) 

𝑉𝑡,𝑠𝑎𝑚(𝑘) = 𝑉𝑡,𝑝𝑟𝑒(𝑢) 

(5) 
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Figure 5. Terminal voltages (𝑉𝑡) for normal case (a) and various ISCr faults cases; ISCr 50 Ω (b), ISCr 30 Ω (c), ISCr 20 Ω (d), ISCr 10 Ω (e), ISCr 5 

Ω (f). 

IV. RESULTS AND DISCUSSIONS 

A. Results without Data Pre-processing 

Fig. 5 shows the 𝑉𝑡s of the battery in the simulation for 

normal case and diverse ISCr fault cases. For each cases, 

1000 constant currents with different C-rates were 

applied to the battery simulator, and then the 1000 𝑉𝑡 s 

were obtained. As the magnitude of ISCr resistance was 

small, the magnitude of self-discharge current was large. 

Hence, the battery with the small magnitude of ISCr 

resistance was discharged rapidly. However, due to the 

high C-rate of constant currents whose magnitude was 

more larger than that of self-discharge currents, the self-

discharge phenomenon was not observed obviously in the 

data of 𝑉𝑡 , resulting in low classification accuracy for 

both training and verification data in Fig. 6. Mean value 

of accuracy data with a range from 50
th 

epoch to 99
th
 

epoch was determined as a performance index, and the 

mean values for training and verification data were 42.9%.  

B. Results with Data Pre-processing 

The 𝑉𝑡,𝑠𝑎𝑚 s for normal case and various ISCr fault 

cases are depicted in Fig. 7. Compared with the 𝑉𝑡s in Fig. 

5, by removing the elements related with the constant 

currents from the 𝑉𝑡  in the data pre-processing, the 

𝑉𝑡,𝑠𝑎𝑚s reflected the effect of ISCr clearly. Therefore, the 

classification accuracy of both training and verification 

data increased significantly in Fig. 8, and the mean values 

with the range from 50
th 

epoch to 99
th

 epoch were 76.2% 

for training data and 82.3% for verification data. 

Learning process with the CNN model was conducted 

continuously until the epoch was 300, because the 

accuracy of both data did not converge until the epoch 

was 100 in Fig. 8. As a result, the accuracy increased 

gradually and converged after the epoch was 200. In 

addition, the mean values with the range from 200
th 

epoch 

to 299
th

 epoch were 95.1% for training data and 96.0% 

for verification data. Therefore, the ISCr caused in the 

battery can be detected early by classifying the fault 

degree of ISCr correctly with the proposed method, and 

then the battery management system can give enough 

time to cope with the ISCr.  

 

 

Figure 6. Classification accuracy of training data (a) and verification 

data (b) with 𝑉𝑡. 
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Figure 7. 𝑉𝑡,𝑠𝑎𝑚s for normal case (a) and various ISCr faults cases; ISCr 50 Ω (b), ISCr 30 Ω (c), ISCr 20 Ω (d), ISCr 10 Ω (e), ISCr 5 Ω (f). 

 

 

Figure 8. Classification accuracy of training data (a) and verification 

data (b) with 𝑉𝑡,𝑠𝑎𝑚. 

V. CONCLUSION 

In this paper, the detection method for the ISCr in the 

battery by classifying the degree of faults with the CNN 

algorithm was introduced. When the battery was 

discharged with the constant currents, it was difficult to 

estimate the accurate parameters in the equivalent circuit 

model of battery with ISCr, leading to problem of 

detection of the ISCr. Therefore, the CNN algorithm was 

used to develop the learning CNN model for classifying 

both normal case and various ISCr fault cases. To reflect 

the self-discharge phenomenon cause by the ISCr 

obviously, as the data pre-processing, the terms related 

with the constant currents in the equation for calculating 

the terminal voltages were removed; this process 

improved the classification accuracy greatly. The data of 

terminal voltages and load currents, obtained from the 

battery simulator, were used to verify the proposed 

method. The soft ISCr faults with large magnitudes of the 

ISCr resistance were classified with high accuracy, and 

then the soft ISCr can be detected by the proposed 

algorithm correctly.  
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