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Abstract—The implementation of the smart grid will greatly 
improve the efficiency of energy supply by detecting, 
predicting, and reacting to real-time local changes of energy 
uses. To this end, energy usage prediction of household 
buildings is critically important to facilitate the 
implementation of smart grid. This study used a single 
house as a prototype, employed different observed features, 
advanced data analysis approach, and artificial neural 
network model to predict real-time dynamics of house 
energy usage. Data analysis revealed that among the 26 
observed features, only the top ten most important features 
were helpful and could maximize the neural network model 
performance. The resultant model has the great predictive 
capability on energy usage, thus provided a promising 
framework to improve the smart grid implementation. 
  
Index Terms—building energy use, machine learning, 
principal component analysis, recurrent neural network 
 

I. INTRODUCTION 

Smart Grid (SG) is an intelligent electricity network 
based on an integrated, high-speed two-way 
communication network, through advanced sensing and 
measurement technology, advanced equipment 
technology, advanced control methods and the 
application of advanced decision support system 
technologies to achieve reliable, safe, economical, 
efficient, environmentally friendly and safe use of the 
grid is promote. SG aims to implement a network that 
could efficiently distribute energy directly from the 
power plant to locations of home or business. Therefore, 
understanding the dynamics of power generation and 
energy demand in different regions is critically important 
for energy delivery efficiency [1]. Residential building 
energy usage occupied about 20% - 30% of total electric 
energy demand [2], [3], thus plays an important role in 
smart grid implementation. For example, a study of 
residential buildings in the UK indicated that electricity 
consumption in television and other electronic appliances 
operating on standby increased by 10.2%. By integrating 
the actions of all users connected to it and utilizes 
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advanced information, control and communication 
technologies, SG is able to largely save electric energy, 
reduce costs, and improve reliability and transparency 
[4]. 

For household building, interior and exterior factors 
both significantly control the overall building energy use. 
From a domestic aspect, two main issues are critical: type 
of electric appliances and the usage of them. External 
factors such as temperature, humidity, light and time are 
usually strongly related to the usage of electronic devices. 
For instance, the air-conditioner is a high power 
consuming machine. During summer time when the 
temperature is high, residential electrical energy will 
increase sharply because of using the air-conditioner. 
Other studies also highlighted that the end-user load 
exhibited important temporal feature, e.g., cooking (food 
preparation) dishwashers, lamps, and small appliances 
energy usage showed a significant evening peak [5], [6]. 

In order to establish a relationship between observable 
features and the building energy use and make 
predictions on future energy use, data-driven machine 
learning models have been widely used. Regression 
models, engineering methods, support vector machines 
[7], multiple regression, neural networks, forecasting 
methods [8]-[10], Hidden Markov model [11], time series 
analysis [12] all have been applied to predict the 
electricity usage or demand. However, a consistent and 
efficient workflow for selecting useful predictors and 
using them in advanced machine learning model to 
generate reliable energy use prediction has been achieved. 
In this paper, data feature analysis technique and neural 
networks models are combined, standardized, and trained 
with detailed building energy consumption measurements. 
Our objective is to test the efficacy of the combined 
modeling framework, thus provide an opportunity to 
facilitate and improve the implementation of the smart 
grid. 

II. METHODOLOGY 

Detailed energy use data as well as multiple interiors, 
exterior environmental features were considered in this 
study [13]. This dataset was based on a house in 
Stambruges, which is a low-energy house [14] completed 
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in December 2015. Energy use (Wh) and temperature and 
humidity in multiple rooms were recorded every 10 
minutes. For the exterior environment of the house, 
pressure, humidity, temperature, wind speed, visibility 
was obtained from a local weather station. We smoothed 
the date using a 24-hour filter, in order to make daily 
scale energy use prediction rather than 10 minutes.  

To build and train an effective machine learning model, 
one of the greatest challenges is to provide the model 
useful but non-redundant features as predictors. In this 
case, we employed Principal Component Analysis (PCA), 
which transforms the original data into a set of linearly 
independent representations of each dimension and thus 
extract the main and non-redundant features of the input 
data. In PCA transformation, data are converted from the 
original coordinate system to a new coordinate system, 
and the selection of the new coordinate system is 
determined by the data itself. The first new axis selects 
the direction with the largest variance in the original data, 
and the second new axis selects the direction orthogonal 
to the first coordinate axis and having the second largest 
variance. This process is repeated until the number of 
repetitions equal to the number of features in the original 
data. It has been observed that most of the variances are 
included in the first few new axes. Therefore, the 
remaining axes can be ignored. In this study, the input 
feature contains twenty-six different variables. Fig. 1 
showed that some features were significantly related to 
others (deep red was positively related and deep blue was 
negatively related). Thus, reduce redundant input features 
became necessary.  

 

 
Figure 1. Pearson correlation among of input features an output 

target. 

After feature selection, we employed Recurrent Neural 
Network (RNN) (architecture showed in Fig. 2), in which 
nodes are connected in the direction of a time series to 
form a directed graph, to model and predict the house 
energy use in the future. Unlike feedforward neural 
networks, recurrent neural networks can process 
sequences by hiding states and optional outputs, looping 
through the inner networks. 

 
Figure 2. Structure of recurrent neural network. 

However, simple recurrent neural networks cannot 
handle long-term time correlations because of recursion, 
weight exponential explosion or vanishing gradient 
problems. Long short-term memory LSTM, a specific 
RNN architecture, is more suitable for processing and 
predicting important events with relatively long memory 
[15]. Unlike traditional RNN, LSTM adds one or more 
memory cells to each node, including input gates, 
forgetting gates, and output gates, which can determine if 
the information is useful and connect previous 
information to the current task. Thus, the model for 
predicting building energy use with longtime series was 
decided to adapt LSTM recurrent neural network. Fig. 3 
demonstrated the structure of one node in LSTM 
architecture 

 
Figure 3. The inner structure of a recurrent neural network with 

LSTM architecture. 

Input activation 

 𝑎𝑡 =  tanh(𝑊𝑎 ∗  𝑥𝑡 + 𝑈𝑎 ∗ 𝑜𝑢𝑡𝑡−1 + 𝑏𝑎) (1) 

Input gate 

 𝑖𝑡  =  𝜎(𝑊𝑖 ∗  𝑥𝑡 + 𝑈𝑖 ∗  𝑜𝑢𝑡𝑡−1 + 𝑏𝑖) (2) 

Forget gate 

 𝑓𝑡  =  𝜎(𝑊𝑓 ∗  𝑥𝑡 + 𝑈𝑓 ∗  𝑜𝑢𝑡𝑡−1 + 𝑏𝑓)  (3) 

Output gate 

 𝑜𝑡  =  𝜎(𝑊𝑜 ∗  𝑥𝑡 + 𝑈𝑜 ∗  𝑜𝑢𝑡𝑡−1 + 𝑏𝑜) (4) 

Internal state 

 𝑠𝑡𝑎𝑡𝑒𝑡 =  𝑎𝑡 ∗ 𝑖𝑡 + 𝑓𝑡 ∗  𝑠𝑡𝑎𝑡𝑒𝑡−1 (5) 

Output  

 𝑜𝑢𝑡𝑡  =  tanh(𝑠𝑡𝑎𝑡𝑒𝑡) ∗  𝑜𝑡 (6) 

At each time step t, LSTM receives the previous time 
step output and current time step input xt . After LSTM 
algorithm processing, internal statet is updated from the 
last statet-1 (5), and output the processed information outt 
(6). As for the state transaction, the forget gate f control 
the percentage of the former state in order to save (3). 
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After activated input data flow (1), an input gate is set to 
control the effects of accepting cellular memory (2), 
input gate layer i decided what to update and a provide 
the information. With updated statet (5), the output gate 
dominates and filter the data flow (4), output the current 
data (6). 

III. RESULTS & DISCUSSION 

A. Principal Component Analysis 
For Recurrent Neural Network, model training is 

commonly limited by the fact that input features are 
highly correlated and the input information is redundant. 
PCA is necessary, in this sense, to remove the redundant 
features, thus help improve RNN model performance. Fig. 
4 demonstrated that by applying PCA, many original 
input features are identified to be highly related. 
However, after PCA transformation only a few axes are 
responsible and need to be considered. For example, the 
first PCA feature explained over 40% variance of the 
data, while the 13th to 26th PCA features nearly explained 
nothing about the data. PCA feature 4 was an “elbow 
point of the curve. After PCA feature 4, no other feature 
explained more than 5% of the observed variance.  

 

 
Figure 4. PCA variables illustration and all features deviation 

occupation (left panel), and the power of each transformed PCA axis in 
explaining the overall data variance (right panel). 

B. Recurrent Neural Network Model 
We employed LSTM implementation of RNN model, 

used 80% of the observed data as training data, and the 
rest as testing data. To perform the best model, many 
parameter combinations have been evaluated. The final 
best model consists of one layer LSTM with 15 nodes 
and “relu” activation function. To avoid overfitting, 20% 
nodes dropout was applied. Batch size for training was 
the length of the training data and 100 epochs were 
enough to achieve a relatively good model. The RNN 
model was applied under four conditions that with one, 
four, ten, and twelve PCA transformed features (Fig. 5). 
Considering only one PCA axis, which explained more 
than 40% of the observed variance (Fig. 4), RNN model 
showed low prediction accuracy (Fig. 5 upper left). 
Considering the top four transformed PCA features, RNN 
model performance was largely improved. For example, 
pearson correlation between observed and modeled 
energy use was as high as 0.7 (Fig. 5 upper right). Further 
considering two more features led to the best model that 
had the highest pearson correlation and the lowest loss 
(Fig. 5 lower left). However, after using ten input 
features, keep increasing input features did not benefit 
the RNN modeling, rather significantly degraded RNN 

model by introducing unnecessary redundant information 
(Fig. 5 lower right).  

 

 
Figure 5. Scatter of test data and model predicted data with 4 

conditions that considered one, four, ten, and twelve PCA features. 

C. Limitation and Future Work 
Although PCA removes the redundant features and 

generally leads to a better LSTM model, limitations also 
exist and need to be improved in the future experiments: 

1) First, features are mostly based on one house 
where temperature and humidity are similar, other 
conditions such as seasons, building style are not 
considered that may influence predicting building energy 
use to a large extent. Collecting more features from 
different conditions ought to be adapt.  

2) Second, the experiment only uses the data of a 
house as an inference, and it is difficult to map the 
relationship between the prediction and time series of the 
entire smart grid. If the prediction needs to be more 
accurate, multiple measurements of the buildings and the 
area are needed to meet the diversity, and more 
situations can be considered in the real prediction. 

3) Third, the model is not perfect. In this model, each 
hidden layer uses only one layer of training, the model is 
relatively simple, and the activation method also uses the 
traditional activation equation. When adjusting the 
number of layers and parameters of the model, the model 
is more complicated when the hidden layer is set to 2, but 
the effect is slightly lower than that of one layer and the 
training time space cost is relatively high. Therefore, the 
optimization model can be used as a future optimization 
point to improve the forecast. 

4) Conclusion 
Implementation of smart grid in terms of efficiently 

deliver energy from power plant to homes and business is 
greatly dependent on effective prediction on building 
energy usage. This study aims to predict the consumption 
of household electricity usage by combining feature 
selection analysis and advanced machine learning model. 
Our results showed that although principal component 
analysis offered a great mathematical foundation to 
effectively transform and rank import features, the 
necessary number of effective feature used in machine 
learning model is generally unknown, thus pose a great 
challenge on precisely modeling and prediction future 
energy use. Our modeling experiment with LSTM 
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recurrent neural network demonstrated that model 
performance was significantly sensitive to the number of 
input features, furthermore, the model using ten input 
features performed best. This study provided a promising 
framework to improve the smart grid energy prediction 
implementation. 
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