
Muscle Synergies Based Gait Phase 
Classification during Kinematically Constrained 

Walking on Slackline 
 

Safi Ullah and Kamran Iqbal 
Department of Systems Engineering, Little Rock, USA 

Email: sxullah@ualr.edu, kxiqbal@ualr.edu 
 

Rajat Emanuel Singh 
North Carolina State University, Raleigh, USA 

Email: resingh@ncsu.edu 
 
 
 

Abstract—The study aims to develop an state estimation 
framework for the detection of stance and swing phases of 
gait cycle during walking on a perturbed platform, i.e. a 
slackline. We use Support Vector Machine (SVM) classifier 
for the detection of stance and swing phase in gait cycle. 
Surface Electromyography (EMG) data was recorded from 
nine different muscles in the lower extremity from five 
healthy subjects. The proposed structure utilizes the 
hypothesis of Muscle Synergies (MS) where the movement 
intent is modelled as hidden state of the state space 
framework. We employ time domain modeling of the neural 
drive that excites the task-dependent muscles. To cater for 
the naturally existing physiological bounds (the non-
negative muscle activations), the state estimation process is 
executed using a constrained form of the Kalman filter. 
Principal Component Analysis (PCA) is used for 
dimensional reduction of reconstructed EMG signal. We 
evaluated performance of SVM classifier, and the detection 
accuracy was later enhanced with post processing. Our 
preliminary experimental results demonstrate a 
reconstruction and classification accuracy greater than 95%. 
  
Index Terms—walking over slackline, electromyography, 
neural drive, muscle synergies, Kalman filter, Principal 
Component Analysis, Support Vector Machine  
 

I. INTRODUCTION 

Movement is generated in the human body through the 
contraction of skeletal muscles. The discrimination 
between the muscular activation patterns underlying 
movement gains immense significance when it comes to 
the myoelectric control of powered prostheses. Pattern 
classification techniques have been applied in the past for 
the classification of finite number of movements with a 
classification accuracy exceeding 90% [1]. However, the 
practical results on acceptance of prosthetic devices do 
not support the reported accuracies [2]. The collected 
sEMG data represents electrical signals that are 
transmitted from the Central Nervous System (CNS) 
towards the muscles in order to generate movements, 
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therefore, estimating the neural command and muscular 
activations could be of significant importance in the 
development of artificial powered limb prostheses [3], [4]. 

The basic function of a nervous system is to coordinate 
all activities in the body. The CNS plays fundamental 
role in actuating smooth and accurate muscle movements 
that are continuous in nature by utilizing complex spinal 
cord structures. The pattern classification techniques 
possess a discrete nature since the information is passed 
on to the controller at discrete time intervals which could 
potentially result into discontinuous movements [2]. A 
classifier can be trained for a specific set of movements 
[1], however, increasing set of movements makes it prone 
to overfitting which is a limitation to such an approach. 
In case of human locomotion, multiple DOFs are 
activated simultaneously [2]. In our earlier study, we 
applied pattern classification algorithms such as Support 
Vector Machines (SVM), Decision Tree (DT), and Nave 
Bayes (NB) to discriminate between swing and stance 
phase during constrained walking on a perturbed 
platform, i.e. a slackline, where the accelerometer data 
had been modeled as input to the Kalman filter in order 
to estimate the movement intent [5].  

MS are defined to be the fixed relative levels of 
activation of muscles. Combinations of such synergies 
are capable of generating movements by activating 
multiple DOFs simultaneously rather than following a 
sequential control regime [6]. The myoelectric prosthetic 
devices currently available allows to perform basic 
movements with lesser stride to stride variability. Since 
our daily tasks involve high gait transition variability, 
therefore, the aim of this study is to develop a framework 
that is capable of detecting changes in gate transition 
with great accuracy for a high variability task. 

To cater for the discontinuous movements resulting 
from the pattern classification techniques, we propose the 
postulation of MS for the estimation of movement intent 
modelled as hidden state of the state space network. 
Since the muscle activations can either be zero or 
positive, we have designed a constrained form of Kalman 
filter for the state estimation process. This paper presents 
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promising preliminary results of our research where the 
EMG signal is reconstructed for five gait trials via state 
space estimation of the movement intent using a 
modified time varying Kalman filter. Gait discrimination 
is performed for the classification of swing and stance 
phase using the SVM classifier. 

The paper is assembled as follows. Section II talks 
about modelling based on state space framework, and 
design of Kalman filter. Section III involves the methods 
used for performing the task. In Section IV, test results 
are introduced with the end goal to delineate the 
practicality of our work. Section V talks about discussion 
of results obtained and conclusions are expressed in 
Section VI. 

II. MATHEMATICAL MODELING 

In this work, we have modeled the movement intent as 
the unknown hidden state to be estimated from the 
surface myoelectric data. In order to explain the 
dynamics of the system, we have used a random walk 
model while the output model has been constructed by 
utilizing the postulation of MS. Since muscle activations 
are non-negative in nature, we have utilized the state 
constrained Kalman filter to gauge the non-negative 
hidden state, i.e. the movement intent [3].  

A. State-Space Model 
State space model for a discrete-time linear system is 

given as 

 𝑥(𝑛 + 1) =  𝐴𝑥(𝑛) + 𝐵𝑢(𝑛) + 𝑤(𝑛)  (1) 

 𝑦(𝑛) =  𝐻𝑥(𝑛) + 𝑣(𝑛)  (2) 

𝑥(𝑛) represents the states where each synergy coefficient 
represents a state variable to be estimated, 𝑦(𝑛) is the 
output, 𝑢(𝑛) is the input to the system, 𝑤(𝑛) and 𝑣(𝑛) 
represent the process and observation noise respectively. 

Since there does not exist any mathematical model that 
can explain the ideal dynamics of CNS, therefore, a 
random walk model is postulated to satisfy performance 
requirements for the estimation of a smoothed activation 
co-efficient, thus we have  

  𝑥(𝑛 + 1) = 𝑥(𝑛) + 𝑤(𝑛) (3) 

The output model presented in this work is based on 
the postulation of MS [3]. A linear model form emerges 
normally because of the additive nature of the spinal 
force fields [7]. Thus, we have, 

  𝑧(𝑛) = 𝑊 × ℎ(𝑛) (4) 

where 𝑧(𝑛) represents the EMG signal, ‘W’ is a (𝑚 × 𝑝) 
matrix in which ‘m’ constitutes the number of muscles 
and ‘p’ amounts to the number of synergies used in the 
problem. While ℎ(𝑛) is the ‘p’-element neural drive to be 
estimated. Once we are able to compute the matrix ‘W’, 
we then utilize it in the output equation of our state space 
model as follows  

  𝑦(𝑛) = 𝑊𝑥(𝑛) + 𝑣(𝑛) (5) 

We have utilized the Non-negative Matrix 
Factorization (NMF) algorithm [7] for the computation of 
the MS matrix W and eq. (5) shows how it relates the 
state vector 𝑥(𝑛)  to the output vector 𝑦(𝑛) . Once the 
muscle synergy matrix W is known, information 
regarding 𝑥(𝑛)  can be used for the reconstruction of 
movement intent. 

B. Kalman Filtering 
Kalman filter is known to be the optimal filter in mean 

square error sense in non-stationary environment [8]. 
Practically, the Kalman filter requires prior knowledge of 
𝐴[𝑛],𝐵[𝑛],𝐶[𝑛],𝑄[𝑛] 𝑎𝑛𝑑 𝑅[𝑛]  where 𝑄[𝑛] 𝑎𝑛𝑑 𝑅[𝑛] 
represent the covariance matrices for process and 
observation noise (𝑤(𝑛) 𝑎𝑛𝑑 𝑣(𝑛)) respectively. In case 
of the problem under investigation, we suggest the 
process noise 𝑤(𝑛)  and observation noise 𝑣(𝑛)  with a 
Gaussian process. Some assumptions used in this work 
regarding process and observation noise are, 

 𝑤(𝑛)~ 𝒩(0,𝑄𝑛), 

 𝑣(𝑛)~ 𝒩(0,𝑅𝑛), 

 𝑄𝑛 = 𝐸[𝑤𝑛𝑤𝑛𝑇], 

 𝑅𝑛 = 𝐸[𝑣𝑛𝑣𝑛𝑇], 

  𝐸[𝑤𝑛𝑣𝑛] = 0 (6) 

The recursive algorithm followed by Kalman filter is 
classified into two parts, i.e. prediction and correction. 
Utilizing the state space model described in (3) and (5), 
we have 

 [PREDICT] 

𝑥�(𝑛|𝑛 − 1) =  𝑥�(𝑛 − 1|𝑛 − 1) 

 𝑃�(𝑛|𝑛 − 1) =  𝑃�(𝑛 − 1|𝑛 − 1) + 𝑄𝑛  (7) 

[CORRECT] 

𝐾𝑛 = 𝑃�(𝑛|𝑛 − 1)𝑊𝑛
𝑇[𝑊𝑛𝑃�(𝑛|𝑛 − 1)𝑊𝑛

𝑇 + 𝑅𝑛]−1 

𝑥�(𝑛|𝑛) = 𝑥�(𝑛|𝑛 − 1) + 𝐾𝑛(𝑦𝑛 −𝑊𝑛𝑥�(𝑛|𝑛 − 1)) 

𝑃�(𝑛|𝑛) = (𝐼 − 𝐾𝑛𝑊𝑛) 𝑃�(𝑛|𝑛 − 1) (8) 

𝐾𝑛 represents the gain of the Kalman filter. 𝑃�(𝑛|𝑛 − 1) 
and 𝑃�(𝑛|𝑛) represent the a-priori and a-posteriori state 
estimation error. Initial conditions for 𝑥(0|0) and 𝑃(0|0) 
were provided and the Kalman filter estimated the state 
vector recursively. 

The physiological non-negativity constraint demands 
our estimation scheme to be modified in a way so that 
desirable results could be achieved. State estimation 
problems can be modified by introducing constraints [9], 
similarly, we have used a constrained form of Kalman 
filer derived by following the estimate projection 
approach [9], which projects the estimated state vector 
onto a non-negative sub space to get 𝑥� and is given by 

 𝑥� = 𝑎𝑟𝑔𝑚𝑖𝑛𝑥�(𝑥� − 𝑥�)𝑇(𝑥� − 𝑥�) (9) 

Such that 𝑥� ⪰ 0 where the symbol ‘⪰’ represents the 
element-wise inequality. 
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III. EXPERIMENTAL DESIGN 

The study received approval from the Institutional 
Review Board (IRB) of University of Arkansas at Little 
Rock, USA under protocol number 17-098. Five healthy 
participants (2 Male & 3 Female) volunteered for the 
study by signing a consent form. The individuals in our 
study performed a postural stability task with multiple 
degrees of freedom. R and MATLAB 2017 programing 
languages were used to process the data in this study. The 
experiment involved walking and balancing on a 19 feet 
long slackline and 0.46 meter above the ground. Every 
task required at least five trials in order to be labelled as 
completed. 

A. EMG and Data Collection 
Noraxon, Direct Transmission System (DTS) was used 

to acquire EMG data at a sampling rate of 1500 Hertz 
(Hz) using wireless sensors. Nine muscles shown in Fig. 
1 from different compartments of the thigh and lower 
limb of the dominant leg were identified by palpation.  

Table I demonstrates the muscles included in our study. 

TABLE I. LOWER EXTREMITY MUSCLES INVOLVED IN STUDY 

Tibilais Anterior (TA) Gracilis (GR) 
Vastus Medialis (VAS(M)) Rectus Femoris (REC(F)) 

Gastrocnemius Medial 
(GAS(M)) 

Vastus Laterialis (VAS(L)) 

Biceps Femoris (BF) Gastrocnemius Laeral 
(GAS(L)) 

Semitendinosus (ST) 
 

Eight shaped circular silver/silver chloride (Ag/Agcl) 
self-adhesive snap electrodes with inter electrode 
distance of 2cm were placed on the surface of the skin 
after cleaning it with isopropyl alcohol. DTS Foot switch 
sensor with two force sensitive resistors were placed at 
the heel and forefoot for the identification of gait cycles. 

 
Figure 1. (A) Tilted (B) Anterior (C) Posterior (D) Side view of the 

muscles where the electrodes were placed. 

B.  Experiment and Trials 
 The prototype is available in the Human Performance 

and Rehabilitation Lab (HPRL) located at UA Little 
Rock, The task included walking and balancing on a 
perturbed surface [5]. The participants were asked to sign 
a consent form before the experiment was conducted. 
The task was conducted on five healthy subjects (two 
males and three females) aged between 18-30 years, 
where every participant was asked to walk on slackline 
which is 19 feet long and 0.46 meters above ground 
surface. The neural constraints while walking on such a 
platform increases variability in the EMG data with each 

gait cycle. The EMG data recording was initiated from 
the time when the participant stepped on the slackline 
taking the first stance with dominant leg. A single trial 
consisted of one gait cycle and each individual walked on 
an average of five gait cycles/trials to complete the task. 

C. Data Processing and Analysis 
Once the data collection phase is over, the very next 

step is pre-processing of data in order to get it ready to be 
analyzed. Data processing involves noise filtering, 
rectification, smoothing, and normalization. The first step 
is noise filtering where we remove the external noise in 
the raw EMG data. The second step involves rectification 
where we take the absolute number of EMG signal so 
that all values become positive since muscle activations 
can either be positive or zero. Third step involves 
smoothing of data and final step is the normalization 
where we normalize the EMG value to the EMG data 
during maximum contraction. 

The acquired EMG was first filtered with a fourth 
order band pass filter with a cutoff frequency ranging 
from 20 Hz to 500 Hz to remove baseline noise and 
movement artifact. EMG data was then rectified and 
smoothed using a moving average filter where the Root 
Mean Square (RMS) envelopes were extracted later with 
a non-overlapping window of 66 samples. The window 
size was chosen depending on the weak sense of 
stationarity and avoiding any phase shift. The raw EMG 
data was finally normalized knowing the fact that it is not 
possible to tell if a muscle is contracting hard or not 
based on the EMG amplitude data. A comparison of raw 
and processed EMG data is shown in Fig. 2. 

 
Figure 2. Comparison between raw and processed EMG data. The x-

axis represents the no. of samples while the y-axis represents the 
amplitude of. 

IV. RESULTS 

A. Matrix Factorization 
 Synchronous/Time Invariant MS based on the 

assumption of non-negativity using Non-negative Matrix 
Factorization Algorithm (NNMF) were extracted from 
the processed EMG data. The mathematical expression 
for the model of synchronous MS is shown by (10). The 
number of MS is not a trivial matter, therefore, prior to 
extracting synergies, the number of synergies required to 
be extracted should be identified. The EMG data was 
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reconstructed for 1 to N factors using NNMF. The factor 
that explains maximum variability in the data ≥ 90% was 
selected as a threshold to identify the number of 
synergies or observations for the Kalman filter. 

  𝐸𝑀𝐺𝑝 = ∑ 𝑊𝑛 ×𝑁
𝑛=1 𝐻𝑛 (10) 

where 𝐸𝑀𝐺𝑝 is the processed EMG (muscle × time series) 
matrix, n represents the number of synergies extracted 
from 1 to N Channels/Muscles. 𝑊𝑛  represents synergy 
vector (Muscle × n) & 𝐻𝑛(𝑛 × 𝑎𝑐𝑡𝑖𝑣𝑎𝑡𝑖𝑜𝑛 𝑐𝑜𝑚𝑚𝑎𝑛𝑑) 
represents the activation coefficient/neural commands. 

We have utilized the NNMF and eight-fold cross 
validation scheme in order to extract the number of 
muscle synergies, whereas, co-efficient of determination 
𝑅2  has been utilized for reporting the cross-validation 
results [3], i.e.  

  𝑅2 = 1 − ∑ (𝑦𝑖−𝑦𝚤�)2𝑖
∑ (𝑦𝑖−𝑦�)2𝑖

  (11) 

where 𝑦𝚤�  is an estimate of 𝑦𝑖 and 𝑦� = 1
𝑛
∑ 𝑦𝑖𝑖 . It is evident 

in Fig. 3 that five synergies demonstrate 95% data 
variability. 

 
Figure 3. 𝑅2 Cross-validation results (y-axis) Vs No. of muscle 

synergies (x-axis). 

B. Neural Command Estimation 
 We extracted the MS matrix and the actual neural 

drive using the NNMF algorithm. The extracted MS 
matrix ‘W’ was then deployed as an output matrix into 
the state space model in (5), while the actual neural drive 
(ground truth) ‘ℎ(𝑛)’ was kept for comparison with the 
estimated neural drive [3]. Based on (11), we have 
chosen the number of synergies to be 5, which indicates 
five state variables, i.e. each synergy represents a state of 
the system. The surface EMG data was processed, 
decomposed and fed to the Kalman filter for the state 
estimation process (the processing of the EMG data can 
be seen under section III C).  

Fig. 4 demonstrates a comparison between the actual 
neural drive ′ℎ(𝑛)′ and the estimated neural drive using 
the Kalman filter for 1000 time points [3], where each 
time point represents a 66ms window. Our work 
generated promising results as can be seen in Fig. 4 
where the correlation co-efficient (r) showed 98.48% ± 
1% reconstruction accuracy. The Muscle synergies (state 
vector) was restored with 𝑅2 = 98.48%. 

 
Figure 4. Estimated neural drive using Kalman filter. The actual 

neural drive in comparison with the estimated neural drive. 

C. Reconstruction of Muscle Activations 
Once we had the estimated neural drive, we 

reconstructed the muscle activation patterns using the 
muscle synergy matrix ‘W’ and the estimated neural 
drive ‘ℎ(𝑘)’. In Fig. 5, we demonstrate the reconstructed 
muscle activation patterns for all the nine muscles using 
estimated activation co-efficient. Similar to the neural 
drive estimation process, this process was also carried out 
for 2000 time points where the correlation co-efficient (r) 
demonstrated 97.36% ± 3% accuracy.  

 
Figure 5. Reconstructed muscle activation using the estimated neural 
drive and the muscle synergy matrix ‘W’. ‘Blue’ represent the actual 

while ‘red’ represents the estimated. 

D. Pattern Classification 
Before beginning with the classification process, the 

reconstructed EMG signal was passed through the feature 
extraction step i.e. extracting additional features by using 
RMS of 50 samples moving window for each gait trial. 
The feature extraction step is termed as post processing 
step in Fig. 6. The scheme involved PCA with SVM as a 
classifier. We used to foot switch data to differentiate 
between stance and swing phase. PCA dimensionally 
reduced the reconstructed EMG signal into three 
principal component feature space depending on the 90% 
cumulative variance of each component [5]. The PC 
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scores were further divided in a way such that 70% of 
data was used for the training and remaining 30% data 
was used for testing of the SVM classifier. Fig. 6 
demonstrates a schematic layout of the proposed control 
structure. 

 
Figure 6. Schematic layout of pattern classification process using the 

reconstructed EMG signal. 

E. Classification of Gait Cycle 
 In order to detect the swing and stance phase, we have 

successfully implemented the SVM classifier and split 
swing and stance into their respective classes. The SVM 
classification plot for the principal component 1 and 2 in 
Fig. 7 explains maximum variance in the data. The 
different colors or regions (blue and pink) represent 
different classes (stance and swing) separated by the 
classification line or decision boundaries. The points x on 
the graph are support vectors that effect this classification 
line. The decision boundaries explained by the SVM can 
be used to train the control mechanism to distinguish 
between stance and swing phase of the gait cycle. 70% of 
the data was evaluated for training of the classifier. The 
fitted model was then examined on the 30% testing data 
in order to validate the effectiveness of proposed scheme. 
The SVM classifier, prior to the post processing step, 
demonstrated an accuracy of 79.76% ± 5.26. We further 
enhanced the performance of classifier by extracting 
additional features by using RMS of 50 samples moving 
window for each gait trial as a post processing step. The 
classification accuracy after post processing increased 
to 96.6% ± 3.7. 

 
Figure 7. Classification of swing and stance using SVM classifier. 

V. DISCUSSION 

Myoelectric control possesses immense importance 
when comes to the invention of powered prostheses. We 
have investigated the problem by employing time domain 
modeling of the neural drive that excites task dependent 
muscles by utilizing hypotheses of muscle synergies in 
state-space framework. In the past researchers have 
utilized the concept of muscle synergies for task 
discrimination in the upper limb [3] [4], however, we 
have investigated a novel task (i.e. walking on a slackline) 
where each gait trial represents a different mode and 
corresponds to higher stride by stride variability [5].  

We modelled the movement intent as hidden state of 
system which was later estimated by using a constrained 
form of kalman filter. Muscle synergies and the neural 
drive were extracted from the EMG signal through the 
NNMF algorithm. The muscle synergy matrix (W) was 
then incorporated as observation matrix in (5), while the 
neural drive matrix ‘h’ in (4) was stored as reference (the 
actual neural drive). The processed EMG data (see 
Section II F) was then fed to the kalman filter for the 
estimation of neural drive. The reconstruction of state 
vector yielded an amazing accuracy of 𝑅2 = 98.46% 
which outperformed the accuracies reported in literature. 
Once estimated the neural drive, we then further 
estimated the muscle activations using the estimated 
neural drive and the muscle synergy matrix (W) 
with 𝑅2 = 97.36%. We have successfully implemented 
the SVM classifier and split swing and stance into their 
respective classes.70% of the data was evaluated for 
training of the classifier. The fitted model was then 
examined on the 30% testing data in order to validate the 
effectiveness of proposed scheme. The SVM classifier, 
prior to the post processing step, demonstrated an 
accuracy of 79.76% ± 5.26 . The post processed 
reconstructed EMG signal demonstrated a classification 
accuracy great than 95%. 

Our preliminary results have demonstrated high 
performance accuracy in the classification of swing and 
stance phase during a gait trial. Classifiers reported in 
literature can classify only a specific set of movements 
with limited DOF, whereas the proposed structure can 
perform task discrimination by eliminating the limitation 
of limited DOF. Fig. 5 and Fig. 6 witness the outstanding 
performance of our work and the next step of our 
research is to develop neuromusculoskeletal models that 
could perform state tracking in real time. 

VI. CONCLUSION 

In this study, we have successfully modelled our 
problem of designing a gait phase detection system in the 
state-space framework where we described system 
dynamics by a random walk model and output dynamics 
of the system were extracted from the recoded 
myoelectric data using the postulation of muscle 
synergies. A state-constrained Kalman filter was 
designed and the movement intent along with muscle 
activations were estimated successfully with a promising 
reconstruction accuracy of 𝑅2 = 98.46%  and 𝑅2 =
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97.36%  respectively in the lower extremity which 
outperformed the accuracies reported in literature. SVM 
classifier was implemented on reconstructed EMG signal 
and the classification error was reduced by discriminating 
the swing and stance phases. Our proposed framework is 
robust and can be very efficiently used in generating 
control signals for powered prosthetic limb applications. 
Preliminary results have been presented to illustrate the 
effectiveness of our research. 
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