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Abstract—An Electric Vehicle (EV) is a proven solution by 
car manufacturers to steadily replace the conventional 
vehicle with a more environmentally friendly option that 
will reduce our dependence on nonrenewable energies. One 
drawback is that an EV may take many hours to reach a full 
charge. Reducing the charging times for EVs are one of the 
leading challenges for promoting this type of vehicle. Also, 
the introduction of EVs into the power grid increases flow in 
the distribution network and as a result increases power 
flow congestion. Traffic conditions also play a key role in 
affecting EV battery consumption. Disturbed traffic 
conditions will result in increased energy consumption of 
the EV battery and negatively affect the overall 
performance of EVs. In this research, the problem of 
scheduling EV battery charging and the assignment of EVs 
to a Charging Station (CS) is formulated as an optimization 
problem and will be solved using a simulated annealing 
optimization method. The assignment of EVs to CSs will 
satisfy predetermined constraints related to CSs restrictions, 
the EV conditions, traffic conditions, etc. The proposed 
approach will be demonstrated using two different scenarios 
of the system, one where the EVs have homogeneous 
components and the second, where the EVs have 
heterogeneous components. From the results, it will be 
proven that the optimal assignment of an EV occurs when 
the State of Charge (SoC) of the EV battery remains at its 
highest possible percentage when arriving at the CS. 
Keeping the battery SoC at a high percentage results in 
reduced energy consumption and less charging time. 
  
Index Terms—Electric Vehicles, Charging Stations, 
Electricity Grid, State of Charge, EV Battery, intermittent 
energy sources, smart charging, simulated annealing 
optimization 
 

I. INTRODUCTION 

The constant increase in environmental issues related 
to electricity is bringing new electricity demands to the 
market, which creates a huge incentive for Electric 
Vehicles (EVs). Because of the increase in awareness of 
the world population towards electricity and 
environmental problems, such as global warming, the use 
of electric vehicles is growing exponentially. Electric 
Vehicles can have different types of batteries, depending 
on the model and characteristics of a particular car. Some 
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of these batteries include lead-acid batteries, lithium-
ion/polymer, sodium/nickel chloride (also known as 
ZEBRA), nickel and cadmium, zinc-air batteries, lithium 
iron phosphate, among others. The most used battery in 
the U.S. is the lithium-ion battery. It is assumed that the 
EVs used in this research have lithium-ion batteries [1], 
[2]. The performance of an EV is directly related to its 
battery. The battery capacity, together with travel routes, 
use of electrical accessories, and driving mode, will 
provide the autonomy of an electric vehicle. 

To recharge an EV battery that is close to its minimum 
state of charge, the vehicle must be driven to a Charging 
Station (CS). Therefore, CS’s need to have complete 
infrastructure with multiple charging ports to be able to 
receive a large number of cars simultaneously [3]. At the 
same time, recharging an EV usually takes a different 
time for each vehicle. It could take from 30 minutes to 
about 24 hours for a vehicle to be fully charged. Because 
the recharging of an EV is still a long process, it often 
generates long queues and waiting times that are 
unbearable for most drivers. This issue is, one of the 
biggest problems when trying to introduce and promote 
EVs [4]. 

When driving an EV, one of the primary concerns to 
the driver is locating a CS that is closest in distance. 
Outside of locating the closest CS, the CS that is the most 
relevant and cost-effective are also important issues that 
need to be addressed. This requires the driver to find a 
route that minimizes distance and cost to reach the 
optimal charging station. Traffic conditions are always 
fluctuating and the access to ports at charging stations is 
variable as well [5]-[7]. The provision of adequate CS’s 
for EVs will be fundamental for the future success and 
service of electric vehicles on the road.  

In this research paper, a novel solution is proposed for 
the problem of locating the nearest CS for EVs. When an 
EV driver is driving, his most critical requirement would 
be to find the nearest CS if the EV runs out of charge. 
Moreover, while on the way to the CS, the EV must not 
be depleted of charge and stop midway which would 
further compound the issue. Hence it is necessary to 
arrive at the CS with as much charge as possible left in 
the EV. So, the problem here is to maximize the state of 
charge of an EV upon arrival in an available charging 
station. This will be carried out by formulating the arrival 
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of EVs at a CS as an optimization problem under normal 
and disturbed conditions, which are affected by weather 
and traffic patterns. In addition, this research will also 
propose a solution to maximize the energy contained in 
the vehicle when the EVs are made up of (i) 
homogeneous components (a system where all EVs have 
the same model and characteristics) and (ii) 
heterogeneous components (EVs that have different 
characteristics including but not limited to battery type, 
make, and model). The charging scenarios can be further 
separated into slow charging and fast charging (type of 
CS) for charging of EV batteries. The study will include 
introducing different constraints on the charging system 
that will directly impact the result. The main contribution 
from our research that distinguishes our effort from that 
of previous researchers is the prioritization of EVs based 
on their state of charge. This means that the EV with a 
battery charge closest to their SoCmin will be treated as 
priority, and therefore will be first to be assigned to the 
closest and appropriate CS. The proposed approach will 
ensure that the SoC of all EVs will remain above their 
respective threshold values. The threshold will be 
determined based on the characteristics of each specific 
EV [8]. 

In this research, the problem of EV charge 
maximization is formulated as an optimization problem 
and Simulated Annealing (SA) is used to solve the 
optimization problem. SA is a very popular optimization 
technique and has many advantages over other 
optimization algorithms. Since there is a non-zero 
probability of accepting higher cost solutions in the 
search process, SA avoids becoming stuck at some local 
minima, unlike some greedy approaches. Also, the 
runtime of SA is controllable through the cooling 
schedule. This algorithm can be abruptly terminated by 
changing the parameter ending temperature in simulated 
annealing. Finally, there is always a best-known solution 
available know matter how little time has elapsed in the 
search process. With SA the user can always get a 
solution. In general, a longer run time would result in a 
better-quality solution. This flexibility explains SAs wide 
popularity [9]. 

The rest of this paper is arranged as follows: Section II, 
will present Literature Review and discuss the past 
methods proposed by researchers to solve the problem of 
EV charging management. Section III will present the 
proposed methodology to identify the CS that are close to 
the EVs so that the energy remaining in the EV is 
maximized while arriving at the CS. Section IV explains 
the problem formulation and the mathematical model that 
is used in this research to maximize SoC of the EV when 
arriving at the CS. This section introduces the reader to 
the various parameters and variables used in the proposed 
method. Section V undertakes the scenario of an EV fleet 
comprising of only homogeneous components and 
Section VI deals with an EV fleet comprising of 
heterogeneous components. Section V and VI illustrate 
the working of the proposed model by validating it on a 
test system and provide the results obtained for 
homogeneous and heterogeneous systems respectively. 

Section VII provides the conclusion and future scope of 
extending this research. 

II. LITERATURE REVIEW 

The topic of charging management and scheduling for 
EVs is of great importance to many researchers as we 
continue to see success in EVs as an alternative to 
conventional gas-powered vehicles. Particularly, several 
research articles have focused on optimization of 
charging and discharging strategies of EVs. This section 
throws light on some of the related research work on 
management and optimal scheduling strategies of EVs. 

In [10], [11] the authors presented a solution to the 
issue of managing and dispatching of electric vehicles 
with a Vehicle to Grid (V2G) approach. Their objective 
function includes minimizing load variance and cost of 
charging associated with EVs. Their proposed approach 
of Technique of Order of Preferences by Similarity of 
Ideal Solution (TOPSIS) was used to solve the scheduling 
problem and scheduling optimization was performed by a 
Grey Wolf Optimization (GWO) method. Results showed 
that with their TOPSIS approach, solutions obtained were 
favorable in terms of both scheduling and cost reduction. 

In [12] the authors present a method to optimize EV 
charging by reducing and minimizing the cost associated 
with battery degradation. They approach this by solving 
the variable electricity cost using a simplified lithium-ion 
battery lifetime model. This model estimates both energy 
capacity fade and power fade due to its temperature, state 
of charge, and daily depth of discharge. An optimization 
method is also addressed in this paper [13], where the 
authors propose to solve the problem of determining the 
distance between EV and CS using the standard 
Microsoft Excel Solver to optimize SoCf. This solver uses 
a basic implementation of the primal simplex method to 
solve linear programming problems. 

The method of EV battery swapping verses EV battery 
charging was proposed by another researcher to reduce 
overall cost of EV battery charging. In [14] the authors 
aim to minimize the cost of EV battery charging by 
considering 3 factors in using a Battery Swapping Station 
(BSS): The incoming EVs battery will be replaced with a 
battery taken from stock, reducing the potential of 
charging damage encountered with the use of high-rate 
chargers, and reducing electricity cost to the grid by 
charging batteries during off peak time periods. This 
proposed approach works more efficiently if the EV 
driver makes advanced appointments to the BSS for 
swapping batteries, in that the BSS can prepare for 
incoming battery swaps. This approach would also need 
to account for the manual labor of swapping batteries by 
trained EV technicians and the real estate to build a BSS 
to allow for incoming EVs and battery storage. Although, 
the BSS method was able to obtain favorable results it 
would not fare well if there was a sudden influx of EVs 
into the grid and works best when EV owners are able to 
schedule requests with ample amount of time to allow the 
BSS to restock and prepare [15], [16]. 

Building upon overcoming the issue of reducing 
damage to the EV battery, in [17], [18] the authors 
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propose a solution of using a real-time Battery 
Monitoring System (BMS) using a coulomb counting 
method for State of Charge (SoC) estimation and 
messaging. This approach can be easily implemented and 
has a less overall complexity. It aims to circumvent the 
possibility of damage to the EVs batteries by using a 
precise state of charge estimation to increase the lifespan. 

In [19], [20] the authors discuss the importance and 
impact of the increase in electricity consumption on the 
power grid. They propose both a global scheduling 
optimization method and local scheduling optimization. 
The authors determined that the local scheduling 
optimization is more resilient to incoming EVs into the 
electric grid and performs better in terms of minimizing 
overall cost of the EVs. The next section explains the 
proposed methodology. 

III. PROPOSED METHODOLOGY 

One of the biggest problems when talking about 
electric vehicles is optimizing the time of recharging of 
an EV. The EV owner worries about how much time does 
an EV have to get a charging station, where is the closest 

charging station, as well as if that charging station is 
vacant and has the correct equipment necessary to 
recharge all different models of batteries and EVs [21].  

The proposed solution will ultimately give the driver 
of the EV an increase in confidence while operating their 
EV. This will be done by ensuring the EV driver 
maintains a maximum state of charge for the EV battery. 
This solution will allow the EV driver to seamlessly 
connect to a network of predetermined charging stations 
while inside of their EV through use of an installed 
software program [22]. They will merely have to press a 
button to begin the proposed algorithm of searching for 
the optimal CS and this system will coincide with the 
internal navigation system of the EV to display to the 
route to the CS [23]. This will decrease the fear of EV 
drivers about losing battery charge while driving and 
allow for an increase in morale. As a result of this one 
can expect to see an increase of sales of EV's and EV's 
becoming much more practical, which will in turn have a 
positive benefit on the environment. To better understand 
the proposed solution to this problem, the methodology is 
explained using a flow chart shown in Fig. 1. 

 

 
Figure 1. Outline of proposed approach. 
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As it can be observed in the flowchart, the system 
starts with analyzing the initial state of charge of the EV. 
If it is determined that the EV Battery needs a charge the 
program will display a warning to the driver alerting them 
that the battery is low. It will then record their state of 
charge at that time and sends a charging request to a 
collaborative system. This system will check with all the 
EV characteristics (GPS coordinates, SoC, etc.). It will 
then check the EV priority with other EVs on the road to 
place each EV in the queue based on EV needs and 
priority. The next step is to optimize the energy of the EV 
when it reaches the charging station [24], [25]. In this 
research, the simulated annealing algorithm is used for 
optimization. This optimization method will optimize 
(maximize) the final state of charge of each EV when it 
arrives at the charging station so that the EV is not 
depleted of charge on its way to the charging station. 
When the optimization is concluded, the program will 
then assign each EV to the optimal CS. When the EV has 
finished this charging process, it can continue its journey. 
The proposed approach is called Simulated Annealing 
based Charging Station Management (SAEVCM). 

IV. PROBLEM FORMULATION 

Problem formulation and the equations used to arrive 
at the mathematical model are explained in Section IV. 

A. Equations 
As stated, the main goal of this research is for the EV 

battery's final state of charge SoCf to be maximized upon 
reaching the charging station. Equation (1) calculates the 
final state of charge for the selected EV. 

 𝑆𝑜𝐶𝑓�𝑖,𝑗,𝑡+𝑇(𝑖,𝑗,𝑡)� = 𝑆𝑜𝐶0(𝑖,𝑡) −  𝐸𝑐𝑛�𝑖,𝑗,𝑡+𝑇(𝑖,𝑗,𝑡)� ×  𝑌(𝑖,𝑗,𝑡) (1) 

Parameter 𝑌(𝑖,𝑗,𝑡)  depends on traffic conditions and it 
considerably impacts the energy consumption. Under 
normal conditions 𝑌(𝑖,𝑗,𝑡) is assumed to be 1. 

  𝑌(𝑖,𝑗,𝑡)  =  ∫ 𝑣(𝑖,𝑗,𝑠)𝑑𝑠
𝑡
𝑡+𝑇(𝑖,𝑗,𝑡)   (2) 

EV speed based on traffic volume is equal to EV speed 
without the influence of traffic multiplied by 1 minus the 
product of average flow of vehicles between the EV and 
selected charging station and time divided by the product 
of time and density of traffic between the EV and the 
selected charging station. 

 v(i,j,t) =  vf(i,j,t)  × �1 −  
q(i,j,t)×T(i,j,t)

d(i,j)×kjam(i,j,t)
 � (3) 

Time equals the distance traveled by the EV divided by 
speed. 

 𝑇(𝑖𝑗,𝑡) =  
𝑑(𝑖,𝑗,𝑡)

𝑣(𝑖,𝑗,𝑡)
 (4) 

Energy consumed by the EV under normal conditions 
𝐸𝑐𝑛 is equal to the rated capacity of the EV multiplied by 
distance to the charging station divided by the autonomy 
of the EV battery. 

 𝐸𝑐𝑛�𝑖,𝑗,𝑡+𝑇(𝑖,𝑗,𝑡)� =  
𝐶𝑛(𝑖)× 𝑑(𝑖,𝑗)

𝐴(𝑖)
 (5) 

B. Main Objective  
The primary goal of this research is for the EV 

battery’s final state of charge 𝑆𝑜𝐶𝑓  to be maximized 
between its original location and its destination, the CS. 

An EVi is efficiently assigned to a CS when the 
variable 𝐶(𝑖,𝑗,𝑡) takes on the maximum value. Keeping in 
mind the main objective of maximizing the battery final 
SoC, the assignment coefficient 𝐶(𝑖,𝑗,𝑡) will be replaced in 
the assignment matrix by 𝑆𝑜𝐶𝑓�𝑖,𝑗,𝑡+𝑇(𝑖,𝑗,𝑡)�. This 
illustrates the final SoC of the battery of EVi when it 
arrives at the CS. 
𝑆𝑗 at time t + 𝑇(𝑖,𝑗,𝑡), for i = 1, 2, . . ., n; j = 1, . . ., m; 

and at any time, t. The parameter 𝑆𝑜𝐶𝑓�𝑖,𝑗,𝑡+𝑇(𝑖,𝑗,𝑡)� relies 
on system parameters correlated to the EVs and CS 
characteristics, road conditions and vehicle traffic on the 
road such as: 𝑆𝑜𝐶0(𝑖,𝑡) , 𝑑(𝑖,𝑗) , 𝑞(𝑖,𝑗,𝑡),𝑇(𝑖,𝑗,𝑡) , 
𝑘𝑗𝑎𝑚(𝑖,𝑗,𝑡), 𝑣𝑓(𝑖,𝑗,𝑡) , 𝐶𝑛(𝑖)  and 𝐴(𝑖). These parameters are 
described in Table I. The objective function for the 
optimization model is given below: 

 Z(t) =  ∑ ∑ SoCf(ij,t+T(i,j,t))x(i,j,t)
m
j=1

n
l=1  (6) 

TABLE I. NOMENCLATURE AND NOTATIONS 

Variable/Unit Definition 
n number of EV's (EV1, . . ., EVn) 
l number of fast-charging EV's 
K number of slow-charging EV's 
m number of CS's (S1, . . ., Sm) 
mj number of charging ports available at the CS at Sj 

R subset of fast CS's 
L subset of slow CS's 
i index for selected EV 
j index for selected charging station 
t index for time 
𝑐(𝑖,𝑗,𝑡) variable of EVi to Sj at time t 
𝑣(𝑖,𝑗,𝑡) EV speed based on traffic volume (km/h) 
𝑣𝑓(𝑖,𝑗,𝑡) EV speed without traffic at time t (km/h) 
𝑘𝑗𝑎𝑚(𝑖,𝑗,𝑡), density of traffic between the EVi and Sj at time t 

𝑞(𝑖,𝑗,𝑡) average flow of vehicles between EVi and Sj at 
time t (veh/h) 

𝑑(𝑖,𝑗) distance between the EVi and CS 
Sj (km) 

𝑆𝑜𝐶0(𝑖,𝑡) initial SoC of the EVi battery at time t 
𝑑𝑖𝑠(𝑖,𝑡) distance with the remaining energy left related to 

SoC0(i, t) of the battery of EVi at time t (km) 
𝑆𝑜𝐶𝑓�𝑖,𝑗,𝑡+𝑇(𝑖,𝑗,𝑡)� final SoC of the EVi battery at Sj at time t + T(i, j, t) 

𝑆𝑜𝐶𝑚𝑖𝑛 minimum limit for SoC of the EVi battery 
𝑇(𝑖,𝑗,𝑡) required time to make the distance 𝑑(𝑖,𝑗) (h) 
𝐸𝑐𝑛�𝑖,𝑗,𝑡+𝑇(𝑖,𝑗,𝑡)� energy expended between EVi and the station Sj 

during normal conditions (kWh) 
𝐸𝑐𝑑(𝑖,𝑗,𝑡+𝑇) energy expended between the EVi and the station 

Sj during disrupted conditions (kWh) 
𝐶𝑛(𝑖) rated capacity of EVi battery (kWh) 
𝐴(𝑖) autonomy of EVi battery(km) 
𝑥(𝑖,𝑗,𝑡) binary variable. Equals 1 when the EVi is assigned 

to the Sj and equals 0 otherwise 
𝑌(𝑖,𝑗,𝑡) equals to 1 for normal traffic conditions and equal 

to the integral of velocities for disturbed traffic 
conditions 

 
The constraints for the optimization problem are listed 

in equations (7), (8), and (9). In this research, SAEVCM 
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will be used to solve the issue of managing and 
dispatching EVs to their respective Charging Station (CS). 
SAEVCM is used to optimize the objective function Z 
above in which it maximizes the final state of charge for 
the EV. The objective function will be solved in two 
different phases. In the first phase all EV’s and CS’s will 
have the same characteristics. EVs will share the same 
make, model and charging speed (homogeneous 
components) [26], [27]. In the second phase, the EV fleet 
is comprised of heterogeneous components, meaning that 
EV’s will vary in make, model and charging speed. The 
approach will begin by working with a charging system 
under normal conditions, where 𝑌(𝑖,𝑗,𝑡) is assigned a value 
of 1. Charging system under disturbed conditions will be 
dealt with next. The value of 𝑌(𝑖,𝑗,𝑡) from Eq. (2) will have 
an impact on the total energy consumed by the EVi 
battery and the final SoC of the EVi battery. 

V. CHARGING OF EVS WITH HOMOGENEOUS 
CHARACTERISTICS 

A. Constraints Definition 
The EV fleet is made up of homogeneous components 

and the following constraints will be considered: 
• There will be a predetermined number of ports 

available at the charging stations and all ports will 
share the available charging power. 

• EV’s will share the same make and model 
characteristics (Tesla Model 3) but differing initial 
state of charges. 

• Only one CS will be assigned to each EV. 
• Each CS can charge EVi simultaneously up to the 

maxi- mum number of ports available. 
• Prioritization of assignment of EV’s to CS’s is 

applied to the EV closest to its minimum threshold 
state of charge. 

B. Constraints Formulation 
During the optimization process the following 

constraints must be satisfied: 
• Only one charging station will be assigned to each 

EVi at time t. 

 ∑ x(i,j,t)
m
j=1  (7) 

• The remaining energy percentage of the EVi 
battery should be higher than the battery 
consumption it takes for the EVi to travel the 
distance to the CS. 

 d(i,j) ≥  dis(i,j) (8) 

• There are a finite number of ports at each charging 
station and the proposed methodology will not 
allow an excess of EV’s to be assigned to the 
charging stations at any time t. 

 ∑ x(i,j,t)
n
i=1  (9) 

C. Simulated Annealing EV Charging Management 
Optimization Method  

Simulated Annealing (SA) is a method for obtaining 
the optimal solution for a given problem. It is a meta-

heuristic approach to solve optimization problem in a 
specified search space. It was made popular by the use of 
the traveling car salesman problem where the search 
space is large and discrete [28]. 

In this research, the problem of maximizing the energy 
remaining in the EV when it arrives at the CS will be 
solved using SA. This method will include the calculation 
of vehicle flow between the initial location of the EV and 
CS at time t, 𝑞(𝑖,𝑗,𝑡). It will also calculate the final SoC for 
each EV battery upon reaching its destination. 

The name Simulated Annealing came from the 
annealing of metals, a technique in which controlled 
heating and cooling of a metal is used to increase the size 
of its crystals and reduce their impurities. This technique 
of slow cooling is implemented into the SA algorithm 
and is interpreted as a gradual decrease in the probability 
of accepting worse solutions as the search space is 
explored. Accepting worse solutions is a crucial portion 
of meta-heuristics because it allows for a more detailed 
and extensive search for the optimal solution. The SA 
algorithm works in the following steps. At each time 
interval, the process randomly selects a solution close to 
the current one, measures its properties, and decides to 
move or to stay with the current solution. This is based on 
whether it has decided to choose the new solution as a 
better solution or worse solution than its current one. 
During each step, the temperature is slowly decreased 
from an initial positive value down to zero. The overall 
probability of transitioning to a new better solution will 
remain at 1 or a positive value and the probability of 
moving to a worse new solution is gradually moved 
towards zero. 

D. Values of System Data 
For the implementation of the SA, these are the 

parameters that were chosen: 
• n = 50; Number of cycles 
• m = 50; Number of trials per cycle 
• na = 0.0; Number of accepted solutions 
• p1 = 0.7; Probability of accepting worse solution 

at the start 
• p50 = 0.001; Probability of accepting worse 

solution at the end 
• t1 = -1.0/log(p1); Initial temperature 
• t50 = -1.0/log(p50); Final temperature 
• frac = (t50/t1)(1.0/(n−1.0); Fractional reduction every 

cycle 
For the first focus of the optimization approach the 

following data is supplied: 
• n = 6: sum of EV’s 
• m = 4: sum of CS’s 
• Initial locations of EV’s and CS’s are known 
• Initial SoC of each EVi is randomized 
• The time is started from t = t0 (where t0 is not 

equal to zero for calculations) 
• Total number of charging ports at each CS are: m1 

= 1, m2 = m3 = m4 = 2 
• 𝑘𝑗𝑎𝑚(𝑖,𝑗,𝑡) = 200 [veh/km] 
• vf(i,j,t)= 60 [km/h] 

Table II displays the randomized values of the initial 
state of charge (𝑆𝑜𝐶0 ) and vehicle traffic on the road 
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between EV and CS. Because this part of the focus is 
homogeneous, we only consider EVs of the same make 
and model. The Tesla Model 3 was chosen with the 
autonomy (An) of 354 [km] and the battery rated capacity 
(Cn) of 50 [kWh]. 

TABLE II. SYSTEM DATA: SOC0 , 𝑑(𝑖,𝑗) 𝑎𝑛𝑑 𝑞(𝑖,𝑗,𝑡) 

 
  

 

 S1 S2 S3 S4 
EV1: SoC0 = 41 d 4 7 10 6 

 q 1367 1761 1606 500 
EV2: SoC0 = 78 d 3 4 5 4 

 q 1735 500 1721 1137 
EV3: SoC0 = 64 d 5 3 6 9 

 q 629 1054 500 2209 
EV4: SoC0 = 52 d 6 7 3 2 

 q 1434 1496 765 903 
EV4: SoC0 = 68 d 9 5 8 5 

 q 2125 2400 549 2285 
EV6: SoC0 = 55 d 2 4 10 8 

 q 1776 589 1551 709 

TABLE III. ENERGY CONSUMPTION BY EV UNDER NORMAL AND 
DISTURBED CONDITIONS 

Parameters of EVi  S1 S2 S3 S4 
EV1 Ecn 0.57 0.9887 1.4124 0.8475 
 Ecd 1.432 1.8478 4.6966 2.8622 
EV2 Ecn 0.4237 0.57 0.7062 0.57 
 Ecd 0.5414 0.7342 2.0282 1.1061 
EV3 Ecn 0.7062 0.4237 0.8475 1.2712 
 Ecd 1.3343 0.819 1.3134 3.8839 
EV4 Ecn 0.8475 0.9887 0.4237 0.2825 
 Ecd 1.131 2.1301 0.6131 0.3716 
EV5 Ecn 1.2712 0.7062 1.1299 0.7062 
 Ecd 3.1491 1.6093 1.8445 1.8913 
EV6 Ecn 0.2825 0.57 1.4124 1.1299 
 Ecd 0.4353 0.9149 2.8571 2.0451 

E. Results, Discussions and Analysis 
Using Eq. (1), the vehicle traffic on the road between 

the location of EVi and Sj can be calculated. Under 
normal conditions the parameter 𝑌(𝑖,𝑗,𝑡) is equal to 1. 
Using Eq. (5), the energy consumed by each EV upon 
reaching the charging station can be obtained. In the next 

step, optimization problem under disturbed conditions is 
considered. The variable of vehicle traffic is taken into 
consideration when energy consumption of EVs is 
calculated (𝐸𝑐𝑛 multiplied by 𝑌(𝑖,𝑗,𝑡)).  

In this research, the initial SoC is randomized for each 
EV between 20% and 80%. This range is the normal day 
to day operating percentage charge for the Tesla Model 3 
EV and has been found that staying in between these 
percentages prolongs the life of the EV battery. The SA 
optimization algorithm was executed multiple times to 
get an average data set and parameters for the EVs in 
terms of distance of charging station from EV, 𝑑(𝑖,𝑗), and 
the vehicle flow on the road between the charging station 
and EV at time t, 𝑞(𝑖,𝑗,𝑡). Table II provides the results for 
this scenario. Using the data calculated from Table II, the 
SA algorithm was able to simultaneously account for 
energy consumed by each EV under both normal and 
disturbed conditions. The comparison between energy 
consumption under normal and disturbed conditions is 
displayed in Table III. The final value of 𝑆𝑜𝐶𝑓  of each 
EV under normal and disturbed are given in Table IV. 
These results were further used to prioritize and assign 
the EV’s with a charge closest to their respective 𝑆𝑜𝐶𝑚𝑖𝑛  
to the optimal CS. The results obtained from the SA 
algorithm in combination with the prioritization and 
assignment constraints was used to obtain the results 
displayed in Table IV.  

F. Optimal Assignment 
By implementing the proposed approach optimal 

solution was obtained, which maximizes the values of 
𝑆𝑜𝐶𝑓 using the SA optimization method. The calculated 
values representing the optimal assignment of EV’s to 
CS’s under normal conditions and disturbed conditions 
can be seen in the following figures (Fig. 2 and Fig. 3 
respectively). It can be observed from these graphs that 
the optimal assignment of each EV associated with their 
optimal CS is color coordinated. It is evident that all 
constraints are met, and the main objective has been 
satisfied.  

TABLE IV. OBTAINED SOCF FOR ALL VEHICLES UNDER NORMAL AND DISTURBED CONDITIONS 

Parameters of EV/Sj  S1 S2 S3 S4 
EV1 Sofn 40.43 40.01 39.59 40.15 
 Sofd 39.57 39.15 36.3 39.14 
EV2 Sofn 77.58 77.43 77.29 77.43 
 Sofd 77.46 77.27 75.97 76.89 
EV3 Sofn 63.29 63.58 63.15 62.73 
 Sofd 62.67 63.18 62.69 60.12 
EV4 Sofn 51.15 51.01 51.58 51.72 
 Sofd 50.87 49.97 51.39 51.63 
EV5 Sofn 66.73 67.29 66.87 67.29 
 Sofd 64.85 66.39 66.15 66.11 
EV6 Sofn 54.72 54.43 53.59 53.87 
 Sofd 54.56 54.09 52.14 52.95 

 

©2021 Int. J. Electron. Electr. Eng. 6

International Journal of Electronics and Electrical Engineering Vol. 9, No. 1, March 2021



• The total number of EV’s assigned to each CS has 
not been exceeded. S1 has 1 port and S2, S3, and 
S4 all have 2 ports each. 

• The prioritization constraint is upheld and those 
EV’s that were the closest to their minimum 
threshold are assigned to CS’s first, while still 
maintaining maximum 𝑆𝑜𝐶𝑓 . 

• Each assignment of EV’s is reached while 
maximizing 𝑆𝑜𝐶𝑓. This minimizes the wait time of 
CS’s, overall cost of operating an EV, and gets the 
driver of the EV back on the road as quickly as 
possible. 

 
Figure 2. EV assignment under normal conditions using SAEVCM. 

 
Figure 3. EV’s assignment under disturbed conditions using SAEVCM. 

VI. HETEROGENEOUS COMPONENTS 

In this section, the proposed approach will be 
implemented on heterogeneous vehicles. Heterogeneous 
vehicles are those EVs that have different characteristics 
amongst them (they will have different capacities and 
autonomy’s). The charging stations will also have 
different characteristics among themselves, allowing 
them to be divided into two categories: fast charging and 
slow charging. With all these elements, the main goal 
remains the same and it is to optimize the final state of 
charge of a battery, making it to be the largest possible 
value upon arriving at its destination [29]. SA will be 
used to obtain the optimal solution for this given problem. 

A. Assumptions 
Following the constraints that have already been 

observed in the homogeneous section, this section will 

consider the following in order to obtain the correct 
results: 

1) A higher number of EVs are requesting for EV 
battery recharging 

2) EVs will have varying charge speeds, meaning that 
some will need fast-charging, and some will need slow-
charging. 

3) Each CS will only provide one type of charging: 
fast or slow. 

Table V displays the EV makes and models with their 
respective charging requirements. Note that most of the 
newer EV models offer both types of charging. Table VI 
details the characteristics of EVs used in this research. 

TABLE V. MAKE, MODEL AND CHARGING REQUIREMENTS FOR EVS 

EV EV Make EV Model Charging Mode 

EV1, EV6, 
EV12 Kia 2018 Kia Soul EV Fast Charging 

EV2, EV7, 
EV11 BMW 2018 BMWI3 Slow Charging 

EV4 Nissan 2018 Nissan Leaf Slow Charging 

EV5, EV8 Tesla Tesla Model 3 Fast Charging 

EV3, EV9 Tesla Tesla Model S Fast Charging 

EV10 Hyundai Hyundai Ioniq EV Slow Charging 

TABLE VI. CHARACTERISTICS OF EV 

EV Model 𝐂𝐧(𝐢) A(Km) EV Battery 𝐒𝐨𝐂𝐦𝐢𝐧 
2018 Kia Soul EV 32 164 Li-ion 20 
2018 BMW I3 22 145 Li-ion 20 
2018 Nissan Leaf 24 135 Li-ion 20 
Tesla Model 3 50 354 Li-ion 20 
Tesla Model S 85 400 Li-ion 20 
Hyundai Ioniq EV 28 200 Li-ion 20 

B. Problem Constraints 
The following constraints are imposed: 

• EV’s declared as fast-charging will only be 
assigned to one fast-charging station at time t. 

 ∑ 𝑥(𝑖,𝑗,𝑡)
𝑅
𝑗=1  (10) 

• EV’s declared as slow-charging will only be 
assigned to one slow-charging station at time t. 

 ∑ 𝑥(𝑖,𝑗,𝑡)
𝑙
𝑗=𝑅+1  (11) 

• Final SoC of each EV battery must not exceed the 
minimum limit (SoCmin ) set by the EV maker.  

 𝑆𝑜𝐶𝑓(𝑖𝑗,𝑡+𝑇(𝑖,𝑗,𝑡)) ≥  𝑆𝑜𝐶min (𝑖) (12) 

C. System Parameters 
In the next stage, the proposed optimization approach 

was applied to heterogeneous components with the 
following data (also refer to Table IV): 

• n = 12: total number of EV’s 
• m = 6: total number of CS’s 
• R = 3: sum of fast-charging stations (50 kW DC) 
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• L = 3: sum slow-charging stations (230V single-
16A) (3 kW) 

• Initial distances d(i,j) and EV locations are given 
• Initial SoC of each vehicle EVi SoC0(i,t) are 

randomized 
• The number of charging ports within each CS are: 

n1 = 1, n2 = n3 = n4 = 2, n5 = 4, n6 = 3, n7 = 5 
• 𝑘𝑗𝑎𝑚(𝑖,𝑗,𝑡) = 200 [veh/km] 
• 𝑣𝑓(𝑖,𝑗,𝑡)= 60 [km/h] 

D. Energy Consumption 
The energy consumption 𝐸𝑐𝑑  of all electric vehicles, 

can be evaluated by calculating the difference between 
the SoC initial and SoC final of the EV. These results can 
be observed in Fig. 4. In Fig. 5, all the final state of 
charges for each EV, that were calculated using Eq. 1 are 
illustrated. 

E. Optimal Assignment 
The optimal solution for the problem represented by 

Eq.6 is presented and solved with a SA algorithm using 
MATLAB. Fig. 4 demonstrates the optimal assignment of 
each EV to their respective charging station. Fig. 5 
demonstrates a comparison between the each EVs initial 
state of charge and their final state of charge, further 
illustrating EV battery consumption. It is evident that all 
constraints are met, and the main objective has been 
satisfied. 

 
Figure 4. SAEVCM vs MES. 

 
Figure 5. EV assignment using SAEVCM optimization. 

The number of EV’s assigned to each CS has not 
exceeded set constraints. The assignment of EV’s follows 
the queue determined by the prioritization constraint. For 
each EV battery state of charge, their SOCmin has not 
been reached Battery state of charge for each EV has 
been optimized. EV’s with models Kia Soul EV, Tesla 
Model 3 and Tesla Model S are assigned only to fast-
charging stations. EV’s with models BMW I3, Hyundai 
Ioniq EV and Nissan Leaf are assigned only to slow-
charging stations. 

F. Comparison Results 
Displayed in Fig. 6 is the comparison of the results of 

this study using the SAEVCM optimization method against 

a similar study conducted in [13] using a Microsoft Excel 
Solver. From Fig. 6 it can be seen that the results using the 
SAEVCM optimization method are more favorable in 
maximizing and maintaining a higher 𝑆𝑜𝐶𝑓 overall for the 
EV. SAEVCM was able to retain a higher percentage of 
initial state of charge in 7 of 12 of the EVs with an average 
retained of 96.54% and Microsoft Excel Solver had an 
average state of charge retained of 93.91%. 

TABLE VII. SYSTEM DATA 

Data EVi   S1 S2 S3 S4 S5 S6 
EV1: SoC0 = 32 d 5 4 3 6 8 10 

q 1293 700 1402 1046 1420 700 
EV2: SoC0 = 56  d 2 5 4 7 6 8 

q 1799 732 1211 2266 968 902 
EV3: SoC0 = 28 d 5 9 10 6 1 7 

q 700 700 1266 1304 878 1269 
EV4: SoC0 = 38 d 7 6 5 9 3 2 

q 2300 1511 1493 1640 1245 2368 
EV5: SoC0 = 39 d 2 5 7 6 9 1 

q 1469 700 2011 1857 1601 1746 
EV6: SoC0 = 51 d 9 5 8 4 2 7 

q 1927 700 814 700 1765 700 
EV7: SoC0 = 50 d 6 8 9 4 2 1 

q 700 2114 700 1250 2198 2269 
EV8: SoC0 = 31 d 8 5 2 4 7 6 

q 1157 1758 1909 2400 700 2377 
EV9: SoC0 =60 d 1 2 5 7 6 8 

q 700 1159 700 1330 1817 2400 
EV10: SoC0=74 d 6 10 7 2 4 1 

q 1806 1279 1907 1229 1563 1598 
EV11: SoC0=53 d 2 4 5 6 10 7 

q 1666 700 1191 2223 891 2345 
EV12: SoC0=71 d 5 6 7 3 2 9 

q 700 1544 2256 2014 1700 2197 

 

 
Figure 6. SoCf comparison using SAEVCM optimization. 

VII. CONCLUSION 

In conclusion, this research paper used the simulated 
annealing optimization process to assign electrical 
vehicles to the most suitable charging station. The 
proposed optimization method takes into consideration a 
number of different constraints to be able to achieve the 
main objective. In theory, the system considers the 
minimum SoC of each electric vehicle, the initial SoC, 
the conditions of the road, the traffic density, the priority 
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queue based on the prioritization constraint, and distance 
between the electric vehicle and charging station. It also 
accounts for the energy consumption for the EV to reach 
its destination CS. The main objective of this research is 
solved in two different scenarios: the use of strictly 
homogeneous components and the use of heterogeneous 
components. For the homogeneous case, the results were 
given under two different instances: all of the electrical 
vehicles were being driven under normal road conditions 
(without the additions of traffic density) and the second 
scenario, allocating all of the electric vehicles into a 
system with disturbed conditions. Upon observation of 
the results, it is observed that the final state of charge of 
each electric vehicle was much higher in normal 
conditions compared against disturbed condition, leading 
to lower energy consumption during normal conditions. 

For the heterogeneous section of the research, the 
system was only under disturbed conditions with addition 
of different makes and models of electric vehicles, which 
have different baselines for minimum state of charge and 
differing charging modes. Optimal results and 
assignments were obtained while simultaneously 
satisfying all the constraints detailed previously. Using 
this proposed approach, as each EV reached its 
destination charging station, minimum energy was 
consumed and the SoC of the battery was maximized. 
Proposed models and numerical examples during this 
research demonstrate the effectiveness of the results 
obtained by the Simulated Annealing optimization 
approach and parameters. Comparing the proposed 
SAEVCM method to an already existing technique using 
Microsoft Excel Solver, it is observed that SAEVCM is 
easily scalable for larger systems with higher number of 
EVs and CSs. The future scope of this research work 
includes validating and testing the feasibility of 
SAEVCM on large scale test systems and by considering 
random behaviors of drivers. 
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