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Abstract—The classification of faults based on available 
diagnostic information in large complex mechatronic 
systems is a well-studied research subject. One challenge is 
the classification of faults with missing or ambiguous 
diagnostic information present. In real-world applications, 
this has the effect of misclassified faults, resulting in costly 
replacements of functional components. As even the 
acquisition of diagnostic information is afflicted with costs 
and part of the diagnostic functions are mandatory, the 
design of diagnostic content at an early system development 
stage is essential. The paper presents a procedure to 
automatically allocate a set of diagnostic functions for a 
complex mechatronic system that is informative and low in 
costs. It proposes a granular graph structure called the 
Diagnostic Cover Graph (DCG) to represent the system 
functionalities and the respective diagnostic functions. The 
DCG can represent restrictions on the availability of 
functionalities, restrictions on the executability of diagnostic 
functions and potential interdependence between them. On 
its basis, a decision table is generated, and a minimal test 
cost feature selection method such as the Test-Cost-Sensitive 
Quick Reduct (TCSQR) is conducted. The approach 
guarantees the proposal of a close-to-optimal subset of 
diagnostic functions. The capability of the presented 
procedure is demonstrated for the vehicle brake system for 
several diagnostic scenarios. 
  
Index Terms—diagnostic system, vehicle diagnostics, cost-
sensitive feature selection, granularity graph, rough set 
theory 
 

I. INTRODUCTION 

With the ongoing growth in complexity in large 
mechatronic systems, the demands for complete and 
reliable diagnostic coverage to detect and identify present 
faults is reinforced. Experience shows that missing or 
ambiguous diagnostic information can lead to 
components falsely being classified as faulty and as a 
result, be unnecessarily replaced. The careful planning 
and securing of diagnostic content in the early 
development stage of the system thus saves money in the 
long-term perspective of its usage. 

                                                           
 Manuscript received March 18, 2021; revised May 28, 2021. 

One widely used approach for system diagnosis is the 
application of expert systems, such as rule-based and 
model-based diagnostic expert systems. Imitating human 
decision-making skills, expert systems use a knowledge 
base containing diagnostic information and determine the 
cause of a fault through an inference engine. As the 
process of knowledge acquisition is an essential factor for 
its fault diagnosis capabilities, the approach reaches its 
limitations for increasingly complex systems. [1] 

This limitation is not the case for machine learning 
methods, which is why they gain popularity in the field of 
diagnostics [2]. Machine learning methods use historical 
system data to identify fault patterns and thereby create 
artificial knowledge to diagnose faults.  However, 
machine learning methods are prone to suffer from the 
so-called “curse of dimensionality”, which refers to the 
problems caused by dealing with a large number of 
features and impairs the significance of the model [3], [4]. 
For this reason, feature extraction or feature selection 
methods are applied as a preceding step to reduce the data 
set to its most informative dimensions. 

The diagnostic design for a system includes the 
selection of diagnostic functions that observe specific 
system functions and create diagnostic information in 
case of a malfunction or a fault. In this context, a 
malfunction stands for the abnormal behavior of a 
component whereas a fault denotes the actual defect. The 
diagnostic design contains pre-planning the available 
diagnostic information in case of malfunctions which 
later can be used as features to identify an existing fault 
cause. Initially, there is access to limited system 
information as the diagnostic design is carried out in the 
system's developing time. The functional and structural 
knowledge of the system is progressively refined without 
the system's presence. Traditionally, experts of the 
respective component plan the diagnostic functions using 
their empirical knowledge about normal and faulty 
component behavior from experience and historical data 
[1]. What is mostly unknown in the developing phase and 
thus mainly disregarded in the design of diagnostics is the 
cross-system propagation of faults involving overlapping 
and interacting system functions and resulting in multiple 
malfunctions. 
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With the trend towards automation of processes and 
increasing complexity of systems, the design of 
diagnostic content and hence the allocation of diagnostic 
functions should be automated as well. Several factors 
need to be considered for the automation of the diagnostic 
design. Firstly, restrictions on the availability of a 
component’s functionality can be present that restrict the 
ability to observe a potential malfunction. Another term 
for this is path sensitization, which means that the right 
conditions need to prevail in order to be able to observe 
the respective fault. In particular, the created diagnostic 
content should achieve both unconditional coverage and 
resolution. In this context, coverage means that the set of 
diagnostic functions can detect the occurrence of every 
possible fault. Resolution means that the created 
diagnostic information allows the fault's explicit 
classification by creating a unique fault pattern. [5]  

While the diagnostic content of a system can be 
mandatory to some extent (e.g. on-board diagnostics for 
operational security or emission-related diagnostics in 
vehicles), the remaining system's diagnostic approach 
must be carefully planned. The challenge is to capture 
diagnostic functions of different granular level, meaning 
different levels of detail to the implied diagnostic 
information, and the various conditions concerning their 
executability. For instance, diagnostic functions can 
require a specific operation context to produce reliable 
results, or there are dependencies between diagnostic 
functions. At the same time, the implementation of 
diagnostic functions induces costs, which must be 
considered in their choice. Other factors include the 
robustness of the fault detection method, which is defined 
as the “maximization of the detectability and isolability 
of faults together with the minimization of the effect of 
uncertainty and disturbance” [6]. 

This paper proposes a procedure to automate the task 
of choosing diagnostic functions during the design phase 
of diagnostic content in a domain-independent, efficient 
and cost-sensitive way. The implementation of the 
diagnostic functions itself is not the focus and thus not 
included. 

Its main contribution is the Diagnostic Cover Graph to 
represent functional correlations and the associated 
diagnostic functions of a system in a granular graph 
structure. It can deal with the different granularity of 
diagnostic functions, the dependencies among diagnostic 
functions and restrictions on both the availability of the 
component functionality and the executability of the 
diagnostic functions. A successive cost-sensitive feature 
selection method is executed to eliminate diagnostic 
functions with non-essential information and prioritize 
low cost and essential diagnostic functions. The 
procedure's goal is to design a diagnostic knowledgebase 
that achieves complete coverage and high resolution to 
classify faults, beginning in a system's development stage 
and throughout its entire usage. 

The paper is organized as follows: In Section II, a short 
review of related work and a description of the cost-
sensitive quick reduct algorithm is presented. Section III 
describes the proposed procedure to allocate diagnostic 

functions in detail. In Section IV, the procedure is applied 
to the brake system of a vehicle. The main conclusions 
are drawn in Section V, and future research potential is 
pointed out. 

II. BACKGROUND 

System knowledge in its comprehensive nature and 
varying depth is a cornerstone for system diagnostics. A 
graph is a perfect structure to store this knowledge as it 
can represent different types of knowledge bases in an 
intuitive and versatile manner. For high-dimensional 
system data, e.g. in the form of measurements, it is 
advisable to use dimensionality reduction techniques to 
create a dense and more significant database first. 

In the following, an outline of related work is given, 
focusing on their diagnostic design approach. After that, 
the used algorithm for test-cost sensitive dimensionality 
reduction based on rough set theory is explained. This 
part is included for completeness and can be left out as 
the algorithm is exchangeable with other feature 
extraction methods. 

A. Related Work 
In the literature, there are two main approaches to the 

theory and design of diagnostic reasoning systems. The 
first approach uses first-order principles of the system, 
including structural and functional information. The 
second approach is also called the experiential approach, 
as it uses heuristic information such as measurement data 
and expert knowledge. 

In the field of failure and risk analysis, diagnostic 
reasoning can be done through several methods. Fault 
Tree Analysis (FTA) is a well-known technique, which 
uses a graph tree structure with logical gates to represent 
the dependability of a high-level failure event to 
contributing failure events on lower levels [7]. Another 
approach is the failure mode and risk analysis (FMEA), 
which decomposes the system into finer granular levels. 
It reasons through a backward logic how a low-level 
failure event would affect immediate higher-level events 
[8]. Both approaches depend on already existing fault 
knowledge and thus can not be used in the initial stage of 
development. 

To overcome this shortcoming, [9] proposes a 
hierarchical system model of functionality and 
configuration in the form of a graph, using only 
information present in the conceptual system design. It 
serves as a basis to understand functional failures and 
their propagation paths in complex systems. Another 
work for the early development stage is [10], which 
quantifies the failure propagation potential of a failure by 
using a graph that models the function block diagram. 
These are just a few examples of the applicability of a 
graph structure in the design of diagnostic content. 

To ensure diagnostic coverage and resolution of the 
diagnostic content, [5] proposed a procedure for digital 
electronics using only structural and functional 
information to automatically design diagnostics for a 
device to achieve both diagnostic coverage and resolution. 
An information path model and a simple fault model are 
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established to minimize inquiry conditions and derive 
diagnostic functions. 

Using minimal hitting set algorithms to compute the 
minimal diagnostic content was first explored in [11] and 
was further developed in various other research [12]. 

The minimal hitting set problem includes the 
computation of a minimal hitting set of 𝑆 , which is a 
minimal set of 𝑆 that has a non-empty intersection with 
all subsets of 𝑆. The approach is based on the notation 
that constructing minimal diagnostic content is identical 
to the computation of a minimal hitting set of a set of 
conflicts sets, which is the set of system elements 
potentially responsible for a fault. 

Another approach to reducing diagnostic content is to 
use dimensionality reduction methods. They are mostly 
known as an optional preprocessing step to remove 
irrelevant or redundant features from data sets to diminish 
the curse of dimensionality in machine learning 
algorithms [4]. While feature extraction methods create 
new features from the initial data set, feature selection 
methods maintain the data's semantic by selecting a 
feature subset. Only the latter is thus suitable to achieve 
minimal diagnostic content. In many real-world scenarios, 
the acquisition of diagnostic information also involves 
costs, which cannot be neglected while selecting features 
[13].  

The presented technique uses the first principles of the 
system to model a graph containing system functionalities 
in a granular view. It can thus be applied in the early 
stage of the system development. Interactions between 
functionalities are omitted in the presented scope. 
Depending on the development progress and the 
comprehensive knowledge about the diagnostic functions, 
the technique can be first used to create an initial minimal 
set of diagnostic functions and later be used to obtain a 
minimal set that considers the updated diagnostic 
conditions. For a given set of diagnostic functions, the 
proposed graph structure is versatile enough to imply 
their level of detail, potential dependencies between them 
and possible conditions to their executability. The 
mentioned methods mostly neglected this circumstance. 

To the authors' knowledge, using this kind of multi-
granular graph structure to represent diagnostic coverage 
in combination with the cost-sensitive selection of 
diagnostic functions is a new approach to the design of 
diagnostic content. 

B. Test-Cost-Sensitive Feature Selection via Rough Sets 
One approach is to perform feature selection on data 

sets of discrete values is rough set attribute reduction. It 
relates to the formal mathematical tool of the rough set 
theory first described by Z. Pawlak [14] and aims to 
reduce redundant attributes of data sets while maintaining 
its informative value. The approach stands out, as it is 
fast and efficient, does not change the attribute semantics 
and uses conventional set theory operations [15]. 

Formally, an information system is represented as a 
table where the objects are the rows, and the attributes are 
the columns.  It is denoted as 𝐼 = (𝑈,𝐶𝐶), where U is a 
non-empty finite set of objects, called the universe and 𝐶𝐶 

is the non-empty, finite set of conditional attributes. It is     
𝑎:𝑈 → 𝑉a where 𝑉a  is the set of values of the attribute     
a ∈ 𝐶𝐶 and 𝑎(𝑥) denotes the value of 𝑥 ∈ 𝑈 over a. For a 
decision system, it is  𝐼 = (𝑈,𝐶𝐶 ∪ 𝐷𝐷)  with 𝐶𝐶 ∩ D = ∅ 
where 𝐷𝐷 is the set of decision attributes of 𝑥 ∈ 𝑈. 

Rough set theory can be used for attribute subset 
selection (or feature reduction) for discrete-valued 
attributes as well as for classification [16]. It is based on 
the establishment of equivalence relations or P 
indiscernibility relation  𝐼𝑁𝐷𝐷(𝑃)  for 𝑃 ⊂ 𝐶𝐶: 

 

IND(P)  =  { (x, y) ∈ U2 | a(x)  =  a(y) ∀a ∈ P } 
 

meaning that objects in 𝐼𝑁𝐷𝐷(𝑃)  are equivalent or 
indiscernible with respect to the attributes in 𝑃. Given the 
equivalence relation 𝐼𝑁𝐷𝐷(𝑃), a partition of the universe 
in equivalence classes [𝑥]𝑃  is induced. The quotient set 
𝑋/𝑃 is then defined as the set of all equivalence classes 
[𝑥]𝑃  for 𝑥 ∈ 𝑋 . The rough set of the set 𝑋 ⊆ 𝑈 is 
approximated using only information in 𝑃 ⊆ 𝐶𝐶  by the 
lower and upper approximations of 𝑋 as defined below: 
 

PX =   { x ∈ U|[x]P ⊆ X } 

PX =   { x ∈ U|[x]P ∩ X ≠ ∅} 
 

The so-called positive region then contains all objects 
in 𝑈  that are certain to belong to a target set 𝑋 
considering the attributes in 𝑃. For 𝐼𝑁𝐷𝐷(𝑃), 𝐼𝑁𝐷𝐷(𝑄) with 
𝑃,𝑄 ⊂ 𝐶𝐶 as equivalence relations over 𝑈 it is defined as: 
 

POSP(Q) =∪X∈U/Q PX 
 

From this, the rough set degree of dependency is 
obtained by [14]: 
 

γP(Q) =
|POSP(Q)|

|U|  

 

It is 0 < 𝛾𝑃(𝑄) < 1, which signifies no dependency in 
case of 0 to complete dependency in case of 1 between 
the attribute sets 𝑄 and 𝑃. Subsequently, the significance 
of an attribute     𝑓 ∈ 𝑃 is calculated by: 
 

σP(Q, x) = γP(Q) − γP−{x}(Q) 
 

Having removed all non-significant attributes from the 
data set, one receives the attribute reduct or just reduct, 
which is defined as: 
 

R = {X: X ⊆ C, γC(D) = γR(D)} 
 

for 𝐷𝐷 as the set of decision attributes. There are multiple 
attribute reducts for one dataset. Finding reducts with 
minimal cardinality 𝑅𝑅𝑚𝑖𝑛 ⊆ 𝑅𝑅 is a NP-hard problem [17]. 

When the cost to gather the features is also considered, 
the problem changes into finding a reduct with minimal 
test cost. One possible approach is the test-cost-sensitive 
quick reduct (short TSCQR) algorithm introduced in [13], 
which is an extension of the QuickReduct (short QR) 
algorithm developed in [15]. The TSCQR algorithm 
shown in Algorithm 1 starts from an empty set and then 

©2021 Int. J. Electron. Electr. Eng.

International Journal of Electronics and Electrical Engineering Vol. 9, No. 2, June 2021

28



adds attributes depending on the locally optimal choice 
through the optimality criterion 

 

αγR(D) + (1 − α)�1 − tcR� 
 

where γ𝑅(𝐷𝐷) is the rough set dependency degree and 𝑡𝐶𝑅 
denotes the sum of feature costs (normalized to the range 
of 0-1) in the reduct. The parameter α ∈ [0,1]  can be 
varied to either give more significance to the increase of 
the dependency degree or to the decrease of total costs in 
the choice of features to be added. Experiments have 
shown that choosing α ∈ (0.3,0.4)  improves the 
optimization's performance in most cases [13].  
 
Algorithm 1 TCSQuickReduct 
1: procedure TCSQUICKREDUCT  (𝐶𝐶,𝐷𝐷, 𝑞𝑞( ),𝛼} 
2. 𝐶𝐶 ← the set of all conditional features 
3: 𝐷𝐷 ← the set of all decision features 
4: 𝑞𝑞( ) ← cost function of decision features 
5: 𝑅𝑅 ← ∅ 
6: repeat 
7: 𝑇 ← 𝑅𝑅 
8: max𝑇 ← 0 
9: for 𝑓 ∈ (𝐶𝐶 − 𝑅𝑅) 
10: val  =  𝛼  ⋅  𝛾𝑅∪ {𝑓}(𝐷𝐷) + (1 − 𝛼)

⋅ �1− sum�𝑞𝑞(𝑅𝑅 ∪  {𝑓})�� 
11: if val >  max𝑇 then 
12: 𝑇 ← 𝑅𝑅 ∪ {𝑓} 
13. max𝑇 ← val 
14:       𝑅𝑅 ← 𝑇 
15: until 𝛾𝑅(𝐷𝐷) == 𝛾𝐶(𝐷𝐷) 
16: 𝑀𝑅𝑅 ← sort attributes in 𝑅𝑅 according to test costs in 

descending order 
17: repeat 
18: 𝑀𝑅𝑅 ← 𝑀𝑅𝑅 − {𝑓} 
19: If 𝛾𝑅−{𝑓} == 𝛾𝐶(𝐷𝐷) then 
20: 𝑅𝑅 ← 𝑅𝑅 − {𝑓} 
21: until 𝑀𝑅𝑅 ==  ∅ 
22: return 𝑅𝑅 
23: end procedure 

 
As stated in [13], the TCSQR uses a greedy algorithm 

and thus does not necessarily return a global minimum as 
not all possible combinations of attributes are explored. 
However, it does derive a close-to-optimal reduct in a 
decent time. 

III. DIAGNOSTIC COVER GRAPH 

The Diagnostic Cover Graph is defined for a 
mechatronic system or an application, containing a wide 
range of functionalities described on multiple granular 
levels. Without loss of generality, only one malfunction is 
assigned to each function, and the malfunction can be 
observed from a respective diagnostic function. 

A. General Structure 
Formally, diagnostic coverage of a mechatronic system 

can be represented as a multi-granular heterogenous 
attributed network. The Diagnostic Cover Graph (DCG) 
𝐺 = (𝑉,𝐸,𝐴) is a graphical representation of the system's 
functionalities, the malfunctions and the diagnostic 
functions. The functionalities are arranged according to 
their granular level, and they have a diagnostic function 
attached that can observe the potential malfunction. It 

aims to portray the overall connections between 
functionalities and their diagnostic functions and 
illustrate the coverage of finer granular level 
functionalities by diagnostic functions of a coarser 
granular level. 

A representation of the Diagnostic Cover Graph is 
given in Fig. 1. The nodes 𝑉 =  𝒩 ∪𝒟 are either of type 
functionality, or functionality node for short, which 
corresponds to 𝑛𝑖

(j) ∈ 𝒩 , for 𝑖 = 1, … ,𝑛  or of type 
diagnostic function, which is diagnostic node for short, 
which corresponds to 𝑑𝑖

(j) ∈ 𝒟  for 𝑖 = 1, … ,𝑚 . The 
granular level is set from coarse to refined for 𝑗 = 1, … , 𝑝.  

 

 
Figure 1.  Diagnostic cover graph. 

As for the individual attributes per type, the 
functionality node 𝑛𝑖  has the set of attributes  𝒜𝑖 =
{𝑐𝑐(𝑛𝑖), 𝑙(𝑛𝑖), 𝑟(𝑛𝑖)}  where 𝑐𝑐:𝒩 → 𝒞𝑖  and 𝐶𝐶𝑖 ⊆ 𝒞 
represents the availability condition of the functionality 
and 𝑙:𝒩 → {normal, faulty} is the set of labels, which are 
synonymous for the desired and the undesired behavior of 
a functionality. The condition attribute 𝐶𝐶𝑖 of a node is a 
subset of the finite, discrete condition set 𝒞 =
{cond1, … , cond𝑧} . Additionally, the functionality node 
has a relevance 𝑟:𝒩 → {0, 1}  assigned to it, which 
specifies the level of detail requested in the diagnostic 
information. In this case 𝑟(𝑛𝑖) = 1  means that a 
malfunction in 𝑛𝑖  needs to be uniquely identifiable, 
otherwise 𝑟(𝑛𝑖) is set to 0.  

For diagnostic nodes  𝑑𝑖 , it 
is  𝒜𝑖 = {𝑐𝑐(𝑑𝑖),𝑚(𝑑𝑖), 𝑟(𝑑𝑖)}  where 𝑐𝑐:𝒟 → 𝐶𝐶𝑖  and 
𝐶𝐶𝑖 ⊆ 𝒞 represents the executability condition, 𝑚:𝒟 → 𝑅𝑅+ 
its cost and 𝑟: 𝒟 → {0,1} its relevance. In this context, the 
relevance is to differentiate between mandatory 
diagnostic functions with 𝑟(𝑑𝑖) = 1 and non-mandatory 
diagnostic functions with 𝑟(𝑑𝑖) = 0. The attributes of the 
specific nodes and their granular level can be adapted to 
match the present system.  

The graph is semi-structured as follows: Nodes of type 
functionality are partitioned into their specific granular 
level. Depending on the simultaneous occurrence of the 
'faulty' label in between granular levels, a directed edge 
can connect the nodes from coarser granular to more fine 
granular levels (compare to Fig. 1). The nodes of type 
diagnostic function 𝑑𝑖

(𝑗) ∈ 𝒟 are then connected through 
a directed edge to the functionality node 𝑛𝑖

(𝑗) ∈ 𝒩, given 
that they are able to detect a malfunction in the 
functionality. This structure is interpreted as follows: the 
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diagnostic function 𝑑𝑖
(𝑗) is able to detect the change of the 

label 𝑙 �𝑛𝑖
(𝑗)� of all nodes of type functionality that are 

connected through a directed path in the form of 𝑤 =
�𝑑𝑖

(𝑗),𝑛𝑖
(𝑗),𝑛𝑖

(𝑗−1),𝑛𝑖
(𝑗−2), … ,𝑛𝑖

(𝑝)�  with 𝑑𝑖
(𝑗).  One 

diagnostic function can also observe several 
functionalities in the same granular level by adding 
multiple edges to the respective nodes.  

Without loss of generality, all functionality nodes only 
have two labels, and the attached diagnostic functions can 
unambiguously observe a label change. If this is not the 
case, either an additional functionality node needs to be 
added, or the functionality node needs to be refined to 
meet the criterion. 

A more variable setting is needed to fully represent a 
potential discrepancy between the availability condition 
of a functionality node and the executability condition of 
an attached diagnostic node. Moreover, it is later 
described how the DCG can be adapted to illustrate 
dependencies between diagnostic nodes, a lower specified 
required level of detail for a label change and diagnostic 
functions that imply a higher-level of detail.  

The coverage of label changes of functionalities 
through diagnostic functions across granular levels is 
illustrated by transforming it into the Bipartite Cover 
Graph, which is a bipartite directed graph 𝐵. The nodes 
are grouped into the disjoint and independent sets 𝑈 and 
𝑉, where 𝑈 =  {𝑛𝑖| 𝑛𝑖  ∈ 𝒩 𝑠. 𝑡.  𝑟(𝑛𝑖)  =  1} is the set of 
functionality nodes with an appropriate level of detail and 
𝐶𝐶 =  {𝑑𝑖| 𝑑𝑖  ∈ 𝒟} is the set of all diagnostic functions 
regardless of their granular level. Depending on whether 
the functionality node 𝑛𝑘 ∈ 𝑈 is reachable in the DCG, 
the diagnostic nodes 𝑑𝑖 ∈ 𝐶𝐶  are connected through a 
directed edge to 𝑛𝑘 as is shown in Fig. 2.  

 

 
Figure 2.  Bipartite cover graph. 

Selecting a minimal subset of diagnostic functions in 𝑃 
such that label changes of all nodes in 𝑈 are covered is 
equivalent to finding the solution of a hitting set problem: 
For a bipartite graph 𝐵 with two independent and disjoint 
sets 𝑈  and 𝐶𝐶 , find a subset 𝑃 ⊆ 𝐶𝐶  such that                          
𝑈 = ∪{𝑣∈𝑃} 𝑁𝐵[𝑣] where 𝑁𝐵[𝑣] denotes the neighborhood 
of node 𝑣  in 𝐵 . In this context, however, the solution 
would favor nodes of diagnostic functions on a coarser 

granular level as they cover more label changes and thus 
impede the resolution of diagnostic information on a 
more refined granular level. To achieve a higher 
resolution, the subset of diagnostic functions needs to be 
selected so that no informative diagnostic content is lost, 
as is the case for feature selection methods. Feature 
selection methods can be applied to the problem by 
converting the entailed information of the DCG into a 
decision table. 

The DCG representation as a bipartite directed graph 
simplifies the transformation into a decision table by 
merely using the graph's adjacency matrix (see Table I). 
In this case, the set of relevant functionalities 𝑈 denotes 
the universe set, and the set of diagnostic information 
from diagnostic functions 𝐶𝐶 denotes the set of conditional 
attributes. The set 𝐷𝐷 of decision attributes is chosen to be 
distinctive integers in order to distinguish between 
malfunctions. Hence, the row of the decision table 
represents a list of diagnostic functions that can observe 
the label change in the individual functionality. 

TABLE I.  DECISION TABLE 

 𝒅𝟏
(𝟏) 𝒅𝟏

(𝟐) 𝒅𝟐
(𝟐) 𝒅𝟏

(𝟑) 𝒅𝟐
(𝟑) D 

𝒏𝟏
(𝟑) 1 1 0 1 0 1 

𝒏𝟐
(𝟑) 1 1 0 0 1 2 

𝒏𝟐
(𝟐) 1 0 1 0 0 3 

no fault 0 0 0 0 0 0 
 

B. Extended Structure 
The above-described approach relates to the very 

trivial case to design diagnostic content, where there are 
no conditions to the availability of functionalities or to 
the executability of diagnostic functions. Moreover, 
potential interdependence among diagnostic functions is 
not yet considered. Through the automated adaptation of 
the DCG according to preset rules, the approach is easily 
extended to cover these situations. The following 
paragraphs outline these set of rules. 

In case the executability conditions 𝑐𝑐(𝑑𝑖)  of the 
diagnostic node 𝑑𝑖 ∈ 𝒟  do not match all of the 
availability conditions 𝑐𝑐(𝑛𝑖)  of the individual 
functionality, meaning 𝑐𝑐(𝑑𝑖) ≠ 𝑐𝑐(𝑛𝑖)  for 𝑛𝑖 ∈ 𝒩 , the 
DCG has to be extended in order to represent this 
disparity. The conditions of both the diagnostic node and 
the function node are checked for conformity starting 
from the coarsest level of granularity.  Suppose there is 
one condition cond𝑘 ∈ 𝑐𝑐(𝑛𝑡) for 𝑛𝑡 ∈  𝒩 that is not part 
of the set 𝑐𝑐(𝑑𝑡) for 𝑑𝑡 ∈ 𝒟, meaning that the diagnostic 
function can not observe the functionality during this 
condition. In this case, a copy of the subgraph 𝑆 ⊂ 𝐺 is 
created starting from the node 𝑛𝑡 ,  including all 
subsequent functionality nodes. Denoting the copy of the 
subgraph 𝑆′, the condition of each 𝑛𝑖′ ∈ 𝑆′ is set to only 
include cond𝑘 , meaning 𝑐𝑐(𝑛𝑖′) = {cond𝑘} . For each 
𝑛𝑖 ∈ 𝑆 of the original subgraph, the condition attribute is 
set to exclude cond𝑘 , meaning 𝑐𝑐new(𝑛𝑖) = 𝑐𝑐old(𝑛𝑖) −
{cond𝑘}. The subgraph 𝑆′ is then attached to the original 
graph through an edge of the predecessor diagnostic node 
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of 𝑛𝑡 . Last, the diagnostic nodes of 𝑆  are connected to 
nodes of 𝑆′ according to their coverage of the availability 
conditions of diagnostic nodes in 𝑆′.  

This approach is indicated in the Augmented 
Diagnostic Cover Graph (ADCG) in Figure 3. The 
diagnostic nodes  

 

𝒟 = �d1
(1), d1a

(2), d1bc
(2) , d2

(2), d1a
(3), d2

(3), d1b
(3), d1c

(3)� 
 

have diverse executability conditions, which are depicted 
as the added spots on the nodes. Assuming that the  
functionality nodes 𝒩 = �𝑛1

(1),𝑛1
(2),𝑛2

(2),𝑛1
(3),𝑛2

(3)�  are 
available in all conditions, the nodes in 𝒩 are copied to 
match the executability conditions of 𝒟, resulting in the 
set of functionality nodes 
𝒩′ = 𝒩 ⋃�𝑛1

′(2),𝑛2
′(3),𝑛1

′(3),𝑛1
′′(3)�. 

 

 
Figure 3.  Augmented diagnostic cover graph. 

Like the DCG, the ADCG is transformed into its 
bipartite counterpart with additional elements in the set 𝑈 
and the conditional attribute set 𝐶𝐶 and then represented as 
the Table II. It should be noted that even though the 
number of nodes in 𝑈 increases, the number of decision 
attributes 𝐷𝐷 stay the same (compare to Table I). This puts 
the focus on detecting the malfunctions of functions 
during all their available conditions, without the need to 
distinguish between them. 

TABLE II.  DECISION TABLE FOR ADCG 

 𝒅𝟏
(𝟏) 𝒅𝟏𝒂

(𝟐) 𝒅𝟏𝒃𝒄
(𝟐)  𝒅𝟐

(𝟐) 𝒅𝟏𝒂
(𝟑) 𝒅𝟏𝒃

(𝟑) 𝒅𝟏𝒄
(𝟑) 𝒅𝟐

(𝟑) D 

𝒏𝟏
(𝟑)    1 1 0 0 1 0 0 0 1 

𝒏𝟏
′(𝟑) 1 0 1 0 0 1 0 0 1 

𝒏𝟏
′′(𝟑) 1 0 1 0 0 0 1 0 1 

𝒏𝟐
(𝟑) 1 1 0 0 0 0 0 1 2 

𝒏𝟐
′(𝟑) 1 0 1 0 0 0 0 1 2 

𝒏𝟐
(𝟐) 1 0 0 1 0 0 0 0 3 

no fault 0 0 0 0 0 0 0 0 0 
 
As for interdependent diagnostic functions, such as the 

simultaneous implementation of several diagnostic 
functions or the diagnostic information generated by one 
diagnostic function serving as an input for other 
diagnostic functions, their combined choice must be 
considered in the design of diagnostic content as well. To 
represent interdependent diagnostic functions, the DCG is 
adjusted through additional edges between the diagnostic 

nodes in question. For 𝑑1
(2) as an input and 𝑑1

(3)and 𝑑2
(3) 

as a simultaneous output, the interdependence is 
represented as depicted in Fig. 4. 

 

 
Figure 4.  Realization of interdependence of diagnostic functions. 

The interdependence between diagnostic functions is 
implicated in the decision table by grouping the 
diagnostic information attributes accordingly and 
assigning them to one column. For the diagnostic 
functions in Fig. 4. the attributes are grouped as 
{𝑑1

(2),𝑑1
(3),𝑑2

(3)} and {𝑑1
(2)}. 

A similar approach is performed if the resolution of 
diagnostic information for a label change of a function is 
not necessary to be high. Depending on the prescribed 
granular level of resolution, a diagnostic collection is 
added that combines the diagnostic nodes of lower 
successive functionality nodes. As depicted in Fig. 5. the 
diagnostic collection is defined as 𝑑(3) =  {𝑑1

(3),𝑑2
(3)} . 

The diagnostic collection has no attributes except for the 
executability condition derived from the intersection of 
the executability conditions of its combined diagnostic 
functions, meaning 𝑐𝑐�𝑑(3)� = 𝑐𝑐�𝑑1

(3)� ∩ 𝑐𝑐�𝑑2
(3)�. Thereby 

it functions as a group error, observing a label change in 
node 𝑛1

(2)  with 𝑟�𝑛1
(2)� = 1  in level 2  if either of the 

diagnostic functions 𝑑13  or 𝑑23  observe a malfunction in 
the functionality nodes 𝑛1

(3) or 𝑛2
(3) of level 3.  

 

Figure 5.  Realization of low diagnostic resolution. 

Accordingly, the number of rows in the corresponding 
Table III are reduced, as the set of relevant functionalities 
𝑈 decreased. 

TABLE III.  DECISION TABLE FOR LOW DIAGNOSTIC RESOLUTION 

 𝒅𝟏
(𝟐) 𝒅(𝟑) 𝒅𝟏

(𝟑) 𝒅𝟐
(𝟑) D 

𝒏𝟏
(𝟐) 1 1 0 0 1 

no fault 0 0 0 0 0 
 

In case the created diagnostic information of one 
diagnostic function achieves high resolution to the extent 
such that a label change can be differentiated between 
multiple functionalities, the decision table as in Table I is 
not enough to incorporate its information value. One way 
to incorporate high resolution is to distinguish how the 
diagnostic node covers the functionality nodes. By adding 
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attributes to the edges in the form of different numbers, 
the unique node coverage is represented in the DCG. 
These attributes are then transferred to the Bipartite 
Cover Graph and the decision table shown in Table IV 
accordingly. For a high-resolution diagnostic node  𝑑1

(2) 
from Fig. 1. this means adding edges from 𝑑1

(2)  to the 
functionality nodes 𝑛1

(3) and 𝑛2
(3) with attributes 𝑎1, 𝑎2 as 

integers and 𝑎1 ≠ 𝑎2. The edge between 𝑑1
(2) and 𝑛1

(2) is 
deleted in the end. 

TABLE IV.  DECISION TABLE FOR HIGH DIAGNOSTIC RESOLUTION 

 𝒅𝟏
(𝟏) 𝒅𝟏

(𝟐) 𝒅𝟐
(𝟐) 𝒅𝟏

(𝟑) 𝒅𝟐
(𝟑) D 

𝒏𝟏
(𝟑) 1 𝑎1 0 1 0 1 

𝒏𝟐
(𝟑) 1 𝑎2 0 0 1 2 

𝒏𝟐
(𝟐) 1 0 1 0 0 3 

no fault 0 0 0 0 0 0 

C. Diagnostic Function Selection 
In all mentioned cases, a cost-sensitive feature 

selection algorithm is conducted based on the decision 
table to select the features in the form of diagnostic 
functions. At the same time, the grouping of attributes is 
enforced such that groups of diagnostic functions can 
only be added collectively to the feature set or not at all. 
In this manner, the set of possible diagnostic functions is 
reduced to an extent such that the total costs for 
diagnostics are minimized but not as far as any 
informative content, especially in the sense of diagnostic 
coverage or resolution, is lost.  

It should be added that the costs for the optimization 
are not only restricted to monetary costs but can be a 
combination of factors (for instance diagnostic robustness 
or execution time). One way to do cost-sensitive feature 
selection is through the TCSQuickReduct Algorithm 
addressed in section II.A., which is adapted to handle the 
grouping of features. Whether a global cost-minimal set 
of diagnostic functions for the system is achieved is 
strongly dependent on the choice of the feature selection 
method. 

IV. EXPERIMENTAL ANALYSIS 

An example system is constructed to demonstrate the 
above-described procedure through the Diagnostic Cover 
Graph. The experiments' objective is to present the 
general approach of the procedure and point out its 
capabilities using various scenarios. The procedure can 
be used in a universal context for both technical and non-
technical systems. Hereafter, the application is presented 
for enabling diagnostic information of the brake system 
of a vehicle with varying conditions to the selection of 
diagnostic functions. 

A vehicle brake system's function is to decelerate the 
vehicle even as far as to a standstill, to prevent an 
unintentional acceleration or to hold a stationary vehicle 
in position. It can be divided into the operational brake, 
the emergency brake and the holding brake. Simply put, 
the operational brake functionality is as follows (see Fig. 
6. for reference): As soon as the driver puts force on the 
brake pedal, the force is boosted by the brake booster to 

be then transformed by the main cylinder into hydraulic 
pressure. The brake fluid is thus pressured through the 
brake pipes to the disk brake in the front and the drum 
brake in the back, creating the tension needed to increase 
the wheels' friction force. 

For this example, the operating brake system is 
extended with the holding brake. When the parking brake 
is tightened, it puts tension on the brake cable, which in 
turn creates tension in the brakes. The different granular 
levels for the vehicle brake system consist of - from 
coarse to refined -: system, sub-system, component, and 
state. Henceforth the vehicle brake system is limited to 
the elements outlined in Table V. Moreover, every 
element is comprised of only one functionality with one 
associated malfunction. 
 

 
Figure 6.  Brake system for the vehicle. 1. Brake pedal, 2. Brake 

booster, 3. Main cylinder, 4. Brake fluid reservoir, 5. Disk brake (in 
front), 6. Brake power distributor, 7. Drum brake (in back) (compare to 

[18]). 

The column 'availability condition' states the modes, in 
which the element's functionality is available. Here it 
only differentiates between the modes 
𝒞 = {′park′, ′drive′}. Accordingly, the operational brake 
functionality is only active in the 'drive' mode, whereas 
the holding brake can only be activated in the 'park' mode. 
The 'rel' column indicates the predefined level of detail 
for the diagnostic content. Here, the holding brake 
functionality only needs to be monitored on the granular 
level of the sub-system. The table also describes the 
relation of the elements across different granular levels in 
the column 'belongs to'.  

TABLE V.  ELEMENTS OF GRANULAR GRAPH FOR THE BRAKE SYSTEM 

 Granular   
 Level 

ID  Name Availability 
Condition 

Rel Belongs 
To 

 System h1  brake system park, drive 0  
 Sub-system n1 

n2 
 operational brake 
 holding brake 

         drive 
park 

0 
1 

h1 
h1 

 Component 𝑐𝑐01 
c02 
c03 
c04 
c05 
c06 
c07 
c08 
c09 
c10 

 brake pedal 
 brake booster 
 main cylinder 
 brake fluid reservoir 
 disk brake 
 brake power distributor 
 drum brake 
 brake pipe 
 parking brake 
 brake cable 

   drive 
         drive 
         drive 
         drive 
park, drive 
         drive 
park, drive 
         drive 
park 
park 

1 
1 
1 
0 
1 
1 
1 
0 
0 
0 

n1 
n1 
n1 
n1 
n1, n2 
n1 
n1, n2 
n1 
n2 
n2 

 State 
 

𝑠1 
𝑠2 
𝑠3 

 brake fluid fill level 
 brake fluid pressure 
 brake cable tension 

         drive 
         drive 
park 

1 
1 
0 

c04 
c08  
c10 
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Figure 7.  Granularity graph of the vehicle brake system. 

TABLE VI.  DIAGNOSTIC ELEMENTS OF THE BRAKE SYSTEM 

ID Observes Cost Executability 
Condition 

Rel 

𝑑_ℎ1 ℎ1 4 park, drive 0 
𝑑_𝑛1 n1 3          drive 0 
𝑑_𝑛2 n2 3 park 0 
𝑑_𝑐𝑐01 c01 2          drive 0 
𝑑_𝑐𝑐02 c02 2          drive 0 
𝑑_𝑐𝑐03 c03 2          drive 0 
𝑑_𝑐𝑐04 c04 2          drive 0 
𝑑_𝑐𝑐05 c05 2 park, drive 0 
𝑑_𝑐𝑐06 c06 2          drive 0 
𝑑_𝑐𝑐07 c07 2 park, drive 0 
𝑑_𝑐𝑐08 c08 2          drive 0 
𝑑_𝑐𝑐09 c09 2 park 0 
𝑑_𝑐𝑐10 c10 2 park 0 
𝑑_𝑠1 s1 1          drive 0 
𝑑_𝑠2 s2 1          drive 0 
𝑑_𝑠3 s3 1 park 0 

 
The DCG is constructed by adding nodes according to 

the granular levels and adding edges according to the 
'belongs to' column, as shown in Fig. 7. It is assumed that 
each malfunction can be observed by a diagnostic 
function, as implied in Table VI in the first stage. These 
represent the set of functionality nodes 𝒩. The nodes 𝒟 
of the diagnostic functions are attached to the granularity 
graph as described in Section III. Table VII is derived by 
following the described approach. Since the resolution is 
only necessary as fine as the sub-system level of the 
holding brake, a diagnostic collection for its diagnostics 
is established. The diagnostic collection 𝑑coll_𝑛2 consists 
of the diagnostic functions of associated lower-level 
functionalities that is: 

  dcoll1_n2 =  {d_c05, d_c07, d_c09, d_c10} 

dcoll2_n2 =  {d_c05, d_c07, d_c09, d_s3} 

Moreover, the functionality nodes for the disk brake 
c05 and the drum brake 𝑐𝑐07 are split into their 'drive' and 
'park' availability as they belong to both the operational 
brake and holding brake sub-system and have different 
availability conditions. A range of different scenarios is 
imaginable for possible restrictions on the design of 
diagnostic content in a vehicle system.   

In the first scenario the brake system has no predefined 
diagnostic scope and no access to past knowledge about 
restrictive conditions of potential suitable diagnostic 
functions. Thus, the executability condition for the 
diagnostic function is initially set to match the 
availability condition of the individual functionality. The 
cost of all diagnostic functions is assumed to be one 
without knowing the dependency among them. 

This baseline is extended in the second scenario by 
adding costs to diagnostic functions according to the 
granular level of the associated functionality. The 'cost' 
column in Table VI has adapted accordingly. 

In a third scenario, a dependency among diagnostic 
functions is added. It is assumed that the diagnostic 
information of the diagnostic function of the brake pipe 
𝑑_𝑐𝑐08 is used as an input for the diagnostic functions 
𝑑_𝑐𝑐05 , 𝑑_𝑐𝑐06 , and 𝑑_𝑐𝑐07 . Meaning if either 𝑑_𝑐𝑐05 , 
𝑑_𝑐𝑐06, or 𝑑_𝑐𝑐07 are chosen for the diagnostic content, 
𝑑_𝑐𝑐08  necessarily also needs to be added. The added 
dependency results in the grouping {𝑑_𝑐𝑐05,𝑑_𝑐𝑐08} , 
{𝑑_𝑐𝑐06,𝑑_𝑐𝑐08}, {𝑑_𝑐𝑐07,𝑑_𝑐𝑐08} and {𝑑_𝑐𝑐08}. 

In the fourth scenario, it is assumed that in addition to 
the other conditions, both the diagnostic function of the 
disk brake 𝑑_𝑐𝑐05 and the drum brake 𝑑_𝑐𝑐07 can only be 
executed in the 'drive' mode by setting 𝑐𝑐(𝑑_𝑐𝑐05 ) =
{drive} and 𝑐𝑐(𝑑_𝑐𝑐07 ) = {drive} . The 'executability 
condition' in Table VI has adapted accordingly.  

Table VIII shows the selection of diagnostic functions 
for each scenario using the TSCQReduct Algorithm with  
α =  0.35  and the sum of the associated costs. For 
comparison, the selection of all diagnostic functions is 
given as scenario 0. Consequently, the procedure was 
able to achieve a reduction of cost for all scenarios.  

TABLE VII.  DECISION TABLE OF THE VEHICLE BRAKE SYSTEM 

 𝒅_𝒉𝟏 𝒅_𝒏𝟏 𝒅_𝒏𝟐 𝒅coll_𝒏𝟐 𝒅_𝒄𝟎𝟏 𝒅_𝒄𝟎𝟐 𝒅_𝒄𝟎𝟑 𝒅_𝒄𝟎𝟒 𝒅_𝒄𝟎𝟓 𝒅_𝒄𝟎𝟔 𝒅_𝒄𝟎𝟕 𝒅_𝒄𝟎𝟖 𝒅_𝒔𝟏 𝒅_𝒔𝟐 D 
n02 1 0 1 1 0 0 0 0 0 0 0 0 0 0 1 
c01 1 1 0 0 1 0 0 0 0 0 0 0 0 0 2 
c02 1 1 0 0 0 1 0 0 0 0 0 0 0 0 3 
c03 1 1 0 0 0 0 1 0 0 0 0 0 0 0 4 
c05drive 1 1 0 1 0 0 0 0 1 0 0 0 0 0 5 
c05park 1 0 1 1 0 0 0 0 1 0 0 0 0 0 5 
c06 1 1 0 0 0 0 0 0 0 1 0 0 0 0 6 
c07drive 1 1 0 1 0 0 0 0 0 0 1 0 0 0 7 
c07park 1 0 1 1 0 0 0 0 0 0 1 0 0 0 7 
s01 1 1 0 0 0 0 0 1 0 0 0 0 1 0 8 
s02 1 1 0 0 0 0 0 0 0 0 0 1 0 1 9 
no fault 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
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TABLE VIII.  RESULTS FOR DIFFERENT SCENARIOS 

 Test Reduct Total 
Costs 

0 
 �𝑑_ℎ1,𝑑_𝑛1,𝑑_𝑛2,𝑑_𝑐𝑐01,𝑑_𝑐𝑐03,𝑑_𝑐𝑐04,𝑑_𝑐𝑐05,𝑑_𝑐𝑐06,

 𝑑_𝑐𝑐07,𝑑_𝑐𝑐08,𝑑_𝑐𝑐09,𝑑_𝑐𝑐10,𝑑_𝑠1,𝑑_𝑠2 � 33 

1 �𝑑_𝑐𝑐01,𝑑_𝑐𝑐02,𝑑_𝑐𝑐03,𝑑_𝑐𝑐04,𝑑_𝑐𝑐05,𝑑_𝑐𝑐06,𝑑_𝑐𝑐07
 𝑑_𝑐𝑐08,𝑑_ℎ1 �  9 

2 {𝑑_𝑐𝑐01,𝑑_𝑐𝑐02,𝑑_𝑐𝑐03,𝑑_𝑐𝑐05,𝑑_𝑐𝑐06,𝑑_𝑐𝑐07,𝑑_𝑠1,𝑑_𝑠2}
∪ {𝑑coll2_𝑛2} 

17 

3 {𝑑_𝑐𝑐01,𝑑_𝑐𝑐02,𝑑_𝑐𝑐03,𝑑_𝑐𝑐05,𝑑_𝑐𝑐06,𝑑_𝑐𝑐07,𝑑_𝑐𝑐08,𝑑_𝑠1} 
∪ {𝑑coll2_𝑛2} 

18 

4 �𝑑_𝑛2,𝑑_𝑐𝑐01,𝑑_𝑐𝑐02,𝑑_𝑐𝑐03,𝑑_𝑐𝑐05,𝑑_𝑐𝑐06,𝑑_𝑐𝑐07,𝑑_𝑐𝑐08,
𝑑_𝑠1 � 18 

 
 

The evaluation shows that the sequence in which the 
diagnostic functions appear in the decision table 
influences the selection of diagnostic content through the 
TSCQR algorithm significantly. With alphabetically 
sorted diagnostic functions, the algorithm prefers the 
diagnostic functions on the component level over 
diagnostic functions on the state level, although they are 
equivalent in this scenario. The preference becomes 
apparent in the second scenario, where the diagnostic 
functions on the state level are to be favored as they have 
the same information value with fewer costs. In the third 
scenario, the diagnostic function 𝑑_𝑐𝑐08 is added over the 
diagnostic function 𝑑_𝑠2 despite its cost. As it supplies 
diagnostic input for other diagnostic functions in the 
same granular level, the Diagnostic Cover Graph 
interlinks their respective selection. Although adding 
𝑑_𝑐𝑐08 increases the total costs, it is needed to achieve the 
demanded resolution, which has higher priority. The last 
scenario's restrictions lead to the selection of the 
diagnostic function 𝑑_𝑛2 of the sub-system level over the 
diagnostic collection. This selection results from the 
augmentation of the Diagnostic Cover Graph to represent 
the impaired coverage of the diagnostic functions 𝑑_𝑐𝑐05 
and 𝑑_𝑐𝑐07 . Note that the added restriction to the 
executability condition reduces the resolution of the 
diagnostic content since a malfunction in the disk brake 
and drum brake during 'park' mode cannot be 
distinguished with the provided diagnostic information 
anymore. 

V. CONCLUSION AND FUTURE ANALYSIS 

A new procedure to automate the selection of 
diagnostic functions for the design of diagnostic content 
in a mechatronic system was presented. It uses a granular 
graph structure to represent diagnostic coverage of a 
system, considering restrictions on the availability of a 
function and the executability of a diagnostic function. 
On its basis, a test-cost sensitive feature selection (e.g. 
TSCQR algorithm) is implemented to select an optimal 
set of diagnostic features. Experiments with different 
example scenarios have shown that the approach can 
cope with various restrictions and interdependence of 
diagnostic functions and that the selected diagnostic 
functions are plausible. Although the example scenarios 
are relatively trivial, they foreshadow the procedure's 
capabilities for large and complex systems. 

The current scope of the procedure is to represent 
relations between different granular levels. However, 
especially when dealing with complex and large systems, 
one fault can propagate through the system and creates a 
vast amount of diagnostic information in the process. One 
potential extension of the procedure is to include relations 
between functionalities within a granular level into the 
Diagnostic Cover Graph to obtain a more realistic idea of 
the actual diagnostic information set being produced in 
case of a fault.  

Another possible extension is to capture not only 
discrete conditions on the availability of functionalities 
and executability of diagnostic functions but also 
continuous restrictions such as a range in temperature or 
voltage. In case the selection of minimal cost set of 
diagnostic functions is crucial, the granular graph 
structure can be used as a basis for other cost-sensitive 
feature selection methods which might produce better 
results. These topics will be part of future research. 
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