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Abstract—This paper presents research on the recognition 

of induction motor overload levels using sound analysis. 

Stable and durable operations of induction motors are very 

important in home appliances and industries. Overloading 

is one of faults that can shorten the operating life of these 

electromechanical machines. In our studies, five levels of 

overload status are classified using sounds collected by a 

single microphone. Three acoustic features and six 

classification models are evaluated. The accuracy rate of 

94.85% shows that this is a promising way to classify and 

therefore to monitor induction motor overload.   

 

Index Terms—induction motor overload, classification, 

sound analysis, machine learning 

 

I. INTRODUCTION 

Induction motors are used in various sectors of life. 

They offer many advantages, such as high reliability and 

low pollution. They are usually employed continuously 

for long duration, so condition monitoring and fault 

diagnosis for induction motors is recently almost 

compulsory in complex systems, because any interruption 

can cause huge losses. 

According to [1], faults of induction motors can be 

divided into four classes: bearing (e.g., wear out of 

bearings), stator (insulation damages, for instance), rotor 

(broken rotor bars or cracked rotor end-rings), and other 

faults (eccentricity, for example). 

Because induction motor is an electromechanical 

conversion device, so in order to detect its faults, one can 

use electrical and mechanical signals. Besides, thermal 

and chemical signals are also clues leading to some 

certain faults. 

Electrical signals consist of current, voltage, magnetic 

flux, etc. Motor Current Signature Analysis (MCSA) [2] 

is probably the most popular approach. This is to detect 

faults such as eccentricity, broken rotor bars or cracked 

rotor end-rings, opening or shorting of stator phase 

winding, bent shaft, bearing and gearbox failures. 

Voltage signals are employed to detect supply voltage 

unbalance [3] or stator winding inter-turn faults [4]. 

Magnetic flux can be used for fault detection in rotor 

cage [5] or eccentricity [6]. 

Vibration, noise, and torque are the most widely used 

mechanical signals for condition monitoring. Vibration 

analysis are employed in [7] for bearing fault diagnosis 
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and in [8] for detection of eccentricity. Noise monitoring 

is another approach. It can be applied to detect 

eccentricity [9] and local defects of gearboxes [10], or 

even to predict resident lifetime [11]. For torque 

monitoring, one can employ it for gearbox fault detection 

[12]. 

Thermal monitoring is another good way for induction 

motors, for example, to identify turn-to-turn faults and 

bearing faults [13]. 

In chemical monitoring, insulation degradation can be 

detected chemically using coolant gas analysis [14]. Oil 

analysis is also a chemical tool to detect wear debris 

because faults such as misalignment or overload may lead 

to wearing [15]. 

In operating induction motors, overload is an abnormal 

condition. When a motor is overloaded, it can draw more 

current, causing excessive temperatures. A too high 

temperature may burn motors. Besides, overload can 

result in tooth breakage, or wear in roller bearings and 

gears. In order to detect these consequences, we can use 

approaches mentioned above. 

We try to detect this phenomenon itself, not its 

consequences. In our research, sound analysis is used to 

classify the full load (100 percent of full load), 10 percent 

overload (110 percent of full load), 20 percent overload 

(120 percent of full load), 50 percent overload (150 

percent of full load), and 100 percent overload (200 

percent of full load) operations. It should be mentioned 

that an induction motor with 10 percent overload can still 

operate about 30 minutes, while a 100 percent overload 

can last 10 minutes only. Our approach has three 

advantages. Firstly, sounds of overload appear earlier 

than its consequences (excessive temperatures, tooth 

breakage, etc.), so detecting an abnormal sound can 

prevent these consequences. Secondly, a sound sensor 

and its installation and maintenance are inexpensive. And 

finally, it does not need to stop the motor during the 

detection. 

The organization of the paper is as follows. Section II 

informs the studies recently presented in the literature 

that refer to motor fault detection using audio signal. The 

corpus used in this research is presented in Section III. 

Section IV describes in detail experiments for frame 

classification. The output of Section IV is applied to 

classify one-second segments in Section V. The selected 

feature set and classification model for our recognizer is 

in Section VI. Section VII concludes the paper and 

presents future developments. 
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II. RELATED WORKS 

Among mechanical signals, sounds of electric motors 

are reported to be capable of detecting some mechanical 

and electrical problems. Compared to other signals, 

sounds can be acquired inexpensively and easily using 

microphone(s). Authors in [16] employ a microphone and 

a high-resolution spectral analysis based on the MUSIC 

algorithm for detection of three faults: unbalance, bearing, 

and broken rotor bars. [17] measures acoustic signals by 

the acoustic camera (microphone arrays), the acoustic 

spectrum is then used to detect static eccentricity and soft 

foot. A method for detecting abnormal sounds of the 

motor for condition monitoring and fault diagnosis is 

proposed in [18]. Ref. [19] presents an approach to detect 

bearing and broken rotor bars faults. The acoustic signals 

are collected by five microphones positioned around the 

motor. Then the presence of faults is determined by 

calculating the power spectral density. In [20], acoustic 

signals (recorded with a digital voice recorder) are 

combined with the Bayes classifier and k-Nearest 

Neighbor (kNN) classifier to detect faulty rotor bars and 

shorted rotor coils. The approach in [19] is improved in 

[21] by using the Self-Organizing Maps method for the 

separation of healthy and faulty motors. The diagnosis of 

electric motor in [22] is done with acoustic noise and 

convolutional neural network. This approach is to detect 

tooth damage in the gearbox. 

To our best knowledge, no study of using sounds to 

recognize induction motor overload levels has been 

published so far. 

III. THE CORPUS 

The object of our study is a 4 kW three-phase 

induction motor. Sounds of full load and overload 

operations are recorded by a microphone. This 

microphone is connected directly to the audio input of a 

laptop (see Fig. 1), so the recorder is actually the laptop’s 

sound card. The distance between the motor and the 

microphone is about 20 cm. Soundtracks are acquired 

with the following parameters: sampling frequency is 

44.1 kHz, bit resolution is 16, and mono channel. Levels 

of overload and durations of acquired sounds are listed in 

Table I. This database is used in the next step of our 

research. Spectrograms of those sounds are in Fig. 2. 

Frequency of these signals ranges approximately from 10 

Hz to about 8 kHz. It can be seen that there are 

differences of spectrograms, especially between 200% 

and the four other types. When we listen to them, we 

notice that 150% and 200% sounds are a little more 

jarring than the three others. On the other hand, it is 

rather difficult to distinguish between 100% and 110% 

sounds just by listening. 

 

Figure 1.  The sound recording/recognition system. 

 
100% 

  
110% 120% 

  
150% 200% 

Figure 2.  Spectrograms of full load and overload sounds. 

TABLE I.  THE CORPUS OF OVERLOAD SOUNDS 

Overload level 100% 110% 120% 150% 200% 

Duration (s) 137 131 142 146 112 

IV. FRAME CLASSIFICATION 

In order to classify signals into five categories, a five-

class classifier should be used. It includes a set of 

discriminant features and a classification model. Our 

discriminant features consist of F0, Mel-Frequency 

Cepstral Coefficients (MFCC, 12 coefficients, [23]), and 

Band Energy Ratio (BER, 4 bands, [24]). These very 

popular features in audio signal processing form a 

starting feature set of 17 elements. Then the Principal 

Component Analysis (PCA, [25]) is applied to reduce the 

dimension of our feature vector without losing too much 

information. Essentially, the PCA extracts the important 

information from the original feature set to rebuild them 

as a set of new orthogonal features (principal 

components), and hence to gain a better representation of 

classes by reducing the number of features (n-o-f). In 

order to find the appropriate number of new features, we 

test six classification models for frame classification: 
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Artificial Neural Network (ANN [26]), decision tree (DT 

[27]), Fuzzy Inference System (FIS [28]), Gaussian 

Mixture Model (GMM [29]), kNN [30], and Support 

Vector Machine (SVM [31]). The selected model is then 

applied to classify one-second segments. 

In the first step of our experiments, we try to 

categorize a frame of 1024 samples. For each 

classification model, the n-o-f varies from 1 to 17, and a 

10-fold cross validation is applied to find the best n-o-f 

for that model. The accuracy rate is employed in model 

evaluation. Plots of average accuracy rates depending on 

n-o-f are in Fig. 3. It is noticeable that these plots are of 

the same trend: start at a very low rate (corresponding to 

one feature), then rise up rapidly when the n-o-f increases 

from 3 to 4 (except DT), and finally go nearly 

horizontally. DT begins at a very high rate, but its 

finishing one is not very impressive. For SVM, it starts at 

the lowest rate, but finally it is not left far behind 

compared to others. One can see that besides kNN, the 

best numbers of features of the other five models are not 

17. The best n-o-f of SVM is only 11, resulting in the 

fourth best performance among the six. DT and FIS are 

very close to each other when n-o-f varies from 12 to 17. 

GMM has a drop when n-o-f reaches its maximum value, 

but this model is still the best so far. 

 

 

Figure 3.  Average accuracy of six models for frame classification. 

TABLE II.  ANN (16 FEATURES, 25 HIDDEN NEURONS, 
FEEDFORWARD NETWORK) 

C
o
n

fu
si

o
n
 

m
at

ri
x

 (
%

) 

T
ru

e 
cl

as
s 

100% 13.09 80.56 8.26 0.55 0 

110% 3.57 76.46 16.46 1.95 0.092 

120% 2.12 61.95 31.73 7.89 0.35 

150% 0.059 7.70 27.31 61.87 6.21 

200% 0 0.044 0.70 10.18 85.79 

S
ta

n
d
ar

d
 

d
ev

ia
ti

o
n

 (
%

) 

T
ru

e 
cl

as
s 

100% 0.82 3.93 0.99 0.24 0 

110% 0.47 1.03 0.77 0.37 0.10 

120% 0.33 3.06 1.67 0.92 0.24 

150% 0.081 1.11 2.77 1.80 1.10 

200% 0 0.063 0.33 1.29 1.25 

 
100% 110% 120% 150% 200% 

Predicted class 

 

To have a better view of the performances of these 

models, their confusion matrices (and the corresponding 

standard deviation matrices and parameters) are provided 

in Table II to Table VII. The first thing we can find is that 

100-100 elements of ANN and FIS are small, meaning 

that they can hardly recognize this class. This may lead to 

their two largest off-diagonal elements (100-110 ones). 

All the six models have large 200-200 elements, hence 

they can recognize this class very well. It is worth noting 

that the largest standard deviation (the center element, 

25.29%) of SVM is nearly ten times larger than those of 

other models. This can be explained that SVM is not 

stable in this task. 

TABLE III.  DT (16 FEATURES) 

C
o
n

fu
si

o
n
 

m
at

ri
x

 (
%

) 

T
ru

e 
cl

as
s 

100% 40.97 28.86 25.01 4.82 0.20 

110% 28.57 35.63 24.21 7.66 0.50 

120% 26.40 26.54 32.42 15.42 1.86 

150% 7.03 10.37 17.03 58.04 12.51 

200% 0.16 0.64 1.72 10.00 83.83 

S
ta

n
d
ar

d
 

d
ev

ia
ti

o
n

 (
%

) 

T
ru

e 
cl

as
s 

100% 1.38 1.86 2.09 0.56 0.15 

110% 1.20 0.99 0.95 1.08 0.14 

120% 2.05 1.47 1.53 1.79 0.53 

150% 0.91 1.19 1.79 1.69 1.07 

200% 0.12 0.25 0.43 1.43 1.48 

 
100% 110% 120% 150% 200% 

Predicted class 

TABLE IV.  FIS (16 FEATURES) 

C
o
n

fu
si

o
n
 m

at
ri

x
 

(%
) 

T
ru

e 
cl

as
s 

100% 16.91 71.35 13.30 0.40 0 

110% 6.68 65.02 24.80 1.36 0.020 

120% 5.03 51.46 40.68 6.23 0.063 

150% 0.034 6.17 39.38 50.98 7.02 

200% 0 0.035 1.67 16.20 76.77 

S
ta

n
d
ar

d
 d

ev
ia

ti
o

n
 

(%
) 

T
ru

e 
cl

as
s 

100% 0.84 3.71 1.21 0.13 0 

110% 1.38 2.61 1.92 0.36 0.064 

120% 1.20 2.71 1.43 0.88 0.10 

150% 0.044 0.99 2.93 2.49 1.49 

200% 0 0.045 0.50 3.44 3.56 

 
100% 110% 120% 150% 200% 

Predicted class 

TABLE V.  GMM (13 FEATURES, 2 MIXTURES) 

C
o
n

fu
si

o
n
 m

at
ri

x
 

(%
) 

T
ru

e 
cl

as
s 

100% 56.43 29.83 10.14 3.96 0.062 

110% 25.41 53.23 10.44 8.23 0.29 

120% 29.43 30.86 21.78 19.50 1.20 

150% 3.11 7.10 8.39 76.30 8.23 

200% 0.0085 0.14 0.79 8.09 88.26 

S
ta

n
d
ar

d
 d

ev
ia

ti
o

n
 

(%
) 

T
ru

e 
cl

as
s 

100% 1.40 2.14 0.82 0.64 0.086 

110% 2.23 1.60 0.94 1.20 0.21 

120% 2.42 2.29 1.17 1.77 0.30 

150% 0.74 1.23 0.88 1.30 1.33 

200% 0.027 0.087 0.22 0.79 0.74 

 
100% 110% 120% 150% 200% 

Predicted class 

61©2021 Int. J. Electron. Electr. Eng.

International Journal of Electronics and Electrical Engineering Vol. 9, No. 3, September 2021



TABLE VI.  KNN (17 FEATURES, 65 NEIGHBORS) 

C
o
n

fu
si

o
n
 m

at
ri

x
 

(%
) 

T
ru

e 
cl

as
s 

100% 56.74 27.33 13.47 2.70 0.01 

110% 29.06 46.06 16.08 5.96 0.13 

120% 32.88 27.63 27.79 13.96 0.47 

150% 6.11 7.82 13.90 70.23 4.68 

200% 0.29 0.21 1.32 13.95 79.53 

S
ta

n
d
ar

d
 d

ev
ia

ti
o

n
 

(%
) 

T
ru

e 
cl

as
s 

100% 1.25 2.19 1.13 0.38 0.095 

110% 1.79 1.63 1.16 1.04 0.14 

120% 2.32 2.58 1.24 1.34 0.24 

150% 0.85 1.06 0.91 1.04 0.82 

200% 0.17 0.13 0.33 1.03 0.62 

 
100% 110% 120% 150% 200% 

Predicted class 

TABLE VII.  SVM (11 FEATURES) 

C
o
n

fu
si

o
n
 m

at
ri

x
 

(%
) 

T
ru

e 
cl

as
s 

100% 41.62 3.69 19.43 3.38 0.062 

110% 20.23 51.42 19.26 6.10 0.27 

120% 26.31 34.53 27.50 13.31 1.24 

150% 8.87 12.80 23.41 47.68 12.58 

200% 0.42 0.22 2.24 8.94 84.66 

S
ta

n
d
ar

d
 d

ev
ia

ti
o

n
 

(%
) 

T
ru

e 
cl

as
s 

100% 22.65 21.74 22.42 4.00 0.11 

110% 20.66 23.99 22.63 5.81 0.29 

120% 15.95 19.72 25.29 9.49 1.25 

150% 8.09 8.46 13.40 16.47 9.05 

200% 0.78 0.26 2.55 4.000 6.14 

 
100% 110% 120% 150% 200% 

Predicted class 

 

In this experimental phase, GMM seems to be the best 

one with the highest accuracy rate and a pretty stable 

performance (low standard deviation), becoming the 

candidate for the next phase. 

V. ONE-SECOND SEGMENT CLASSIFICATION 

The number of 1-s segments is fewer than that of 

frames of 1024 samples, so in this stage, the “leave-one-

out” cross validation is applied to GMM to classify 1-s 

segments.  

A. “The Winner Takes It All” 

Because the sampling frequency is 44100 Hz and the 

overlap is 512 samples, each 1-s segment includes 86 

frames of 1024 samples. To categorize an 1-s segment, 

“the winner takes it all” tactic is employed. For example, 

if an 1-s segment contains 30 frames of 100%, 15 of 

110%, 20 of 120%, 11 of 150%, and 10 of 200%, it will 

be recognized as an 100% one. Basing on Fig. 3, we test 

three values of n-o-f: 12, 13, and 16. Confusion matrices 

of classification are presented in Fig. 4. 

 

 

Figure 4.  Confusion matrices of GMM for 1-s segment classification. 

The three matrices show that the 200% class is 

recognized with a probability of 1. But the story is totally 

different for the 120% class. The highest rates belong to 

this class. They vary from 28.6% to even 37.9%. This is 

understandable if we once again see the center element of 

the confusion matrix in Table V. It is only 21.78%. 

According to Fig. 4, an n-o-f of 13 is the most suitable for 

GMM in this task.  

In order to improve the 120% recognition, we try to 

find another way to treat this class. The solution and 

obtained results will be discussed in the next section.  

B. Usage of Threshold 

A threshold is used to recognize the 120% class. If the 

number of frames classified as a 120% one is greater than 

the threshold, the whole 1-s segment will be recognized 

as 120% (see Algorithm 1). Missed detection (MD) and 

false alarm (FA) are employed to find an appropriate 

threshold. The dependences of these ratios on threshold 

are plotted in Fig. 5. 

Theoretically, the chosen threshold is the one at which 

MD and FA are both small. Fig. 5 shows that it should be 

26. But when we test some other values, it is found that 

26 is not the best. Confusion matrices of some other 

thresholds in Fig. 6 demonstrate that firstly these matrices 

are better than the one on the left of Fig. 4, and secondly, 

the competition is among 20, 21 and 22. The sum of the 

diagonal elements (trace) of the 21 matrix is 626, while 

that of the 20 and 22 matrices is 624. Finally, 21 is 

selected as the threshold for the 120% class. This value 

corresponds to two peaks of two curves in Fig. 6. It is 

also noted from the left curve in Fig. 6 that if the 

threshold is greater than 31, the trace becomes a constant. 

The 21 matrix in Fig. 6 results in an accuracy rate of 

94.85%. 

ALGORITHM 1: 1-s Recognition using Threshold 

if number of 120%-frames is greater than threshold 

the 1-s segment is of 120% class 

else  

 apply “the winner takes it all” tactic 

end 
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Figure 5.  MD and FA plots for 120% class. 

 

Figure 6.  Performance with different thresholds for 120% class. 

VI. THE SELECTED RECOGNIZER 

Finally, we choose F0, MFCC, BER, and the usage of 

PCA for our application. It is difficult to compare the 

accuracy of our approach to the other ones, because we 

cannot find any published reports of accuracy of 

induction motor overload sound classification so far. In 

order to classify overloads, the system in Fig. 1 is set up. 

Sounds of the induction motor are collected by a 

microphone. For each sound signal, a Hanning window is 

applied to frames of 1024 samples, the overlap is 512 

samples, then F0, MFCC, and BER are computed from 

each frame and fed to PCA to obtain a set of 13 new 

features. They are then fed to a GMM. One second of 

sound takes our algorithm (installed in a laptop with Intel 

Core i5 and 8GB of RAM) about 0.15 seconds to process. 

The output of this system will tell that the recorded signal 

came from one of five levels of overload. Because the 

100% overload is the most dangerous level, the 100% 

recognition accuracy rate for this level is very 

considerable. By detecting and classifying overload 

condition, this system can come to the root of some 

problems, such as tooth breakage, wear in roller bearings 

and gears, excessive temperatures, or even burning of 

motors. 

VII. CONCLUSION 

This paper presents a method for classifying sounds of 

induction motor overload using audio signals and 

Gaussian mixture model. Audio signals are recorded by a 

microphone placed near an induction motor to monitor its 

overload. A feature set (including F0, MFCC, and BER) 

and six classification models are evaluated. Experiments 

prove that GMM fits our approach. Our proposed system 

can be an online monitoring method because it does not 

need to stop the motor. This system requires a 

microphone, so it is inexpensive. It is also flexible, 

meaning that if we can collect sounds of other faults, we 

can upgrade it by retraining it. Filtering techniques should 

be applied if this method is moved to industrial 

environment to reduce noises. Future developments can 

be related to other faults, such as eccentricity, bearing, 

rotor bars, etc.  
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