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Abstract—We give an overview of the different rendering 

methods and we demonstrate that the use of a Generative 

Adversarial Networks (GAN) for Global Illumination (GI) 

gives a superior quality rendered image to that of a 

rasterisations image. We utilise the Pix2Pix architecture and 

specify the hyper-parameters and methodology used to 

mimic ray-traced images from a set of input features. We 

also demonstrate that the GANs quality is comparable to the 

quality of the ray-traced images, but is able to produce the 

image, at a fraction of the time. Source Code: 

https://github.com/Jaredrhd/Global-Illumination-using-

Pix2Pix-GAN 

Index Terms—Generative Adversarial Networks, Global 

Illumination, Indirect Lighting, Ray-tracing, Rendering, 

Machine Learning 

I. INTRODUCTION

The rendering of realistic 3D environments remains a 

challenging process for real-time applications [1]. For 

example, global illumination is the effect of calculating 

more realistic lighting, by having light bounce off one 

object onto another object [2]. This effect adds more 

realism to an image since colours from one object have 

the ability to influence those of another object. To create 

this effect is a costly process. Currently, there are two 

major methods that are used to render a 3D environment. 

These are rasterisation and ray-tracing [3]. Rasterisation 

is a fast way to render a 3D scene to a 2D screen, but it 

lacks some graphical effects like global illumination. 

Such effects are usually performed in a separate step like 

post-processing or instead are baked into the scene [4]. 

The baking of global illumination is the process in which 

global illumination is calculated for static objects (non-

moving objects) during compilation and does not happen 

in realtime. This means that dynamic objects do not get 

global illumination. Ray-tracing on the other hand creates 

such effects naturally due to the way that ray-tracing 

models physical light, but ray-tracing is a costly process 

[4]. In this paper, we demonstrate that a Generative 

Adversarial Network produces quality similar to ray-

tracing, but in a fraction of the time on older GPU 

hardware. The ability to be able to run this on older GPU 
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hardware is beneficial as it can decrease the amount of e-

waste and prolong the lifespan of these older devices. 

The paper is laid out as follows. In section II, we give 

an overview of the relevant rendering techniques. Section 

III discusses the implementation of our Generative 

Adversarial Network. Section IV explains our 

performance metrics. Section V presents our results. 

Sections VI, VII and VIII present discussions, limitations 

and conclusions of our work. 

II. BACKGROUND

A. Global Illumination

Global illumination or indirect illumination is the

effect of calculating more realistic lighting [2]. The scene 

in Fig. 1 is set up with a directional light, then rendered 

using a rasterisation method and a ray-tracing method. 

We can see that in Fig. 1, the pink floor adds a tinge of its 

colour to the other objects in the scene. This is expected 

since the light would bounce off the floor onto other 

objects in the scene. Global illumination is different from 

ambient light where ambient light is just a global light 

throughout the scene to ensure that the scene is not too 

dark [5]. 

Figure 1. Top: Direct Illumination (Rasterisation) and Bottom: Indirect 

Illumination (Ray-tracing). 
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B. Ray-Tracing 

Ray-tracing is a method that attempts to simulate the 

physical behaviour of light by shooting a ray and tracing 

the path that it follows [3]. By allowing the ray to create 

more rays for each object that it hits, more realism can be 

added to the final rendered image. This is similar to 

allowing light to bounce off objects. The process of 

performing ray-tracing is costly. Recently, specialised 

hardware (called RT cores) has been created to allow for 

ray-tracing to be approximated in real-time [6]. Our 

demonstration will be on older GPU hardware that does 

not have access to such specialised cores. 

C. Rasterisation 

Rasterisation is the older method of rendering 3D 

scenes. The idea is given a 3D environment, you can 

apply a pipelined process through transformations and 

projections to arrive at a 2D output [3]. The issue with 

this approach is that this is a process to map the 3D 

environment to 2D, without the computation of colours or 

lighting. Lighting and colouring of an object are instead 

performed in another stage called shading. Shaders 

usually contain information about the object they are 

working on and do not take into account surrounding 

objects. Since shaders do not take into account 

surrounding objects, they fail to reproduce effects such as 

global illumination. This is due to the fact that other 

objects cannot contribute to the colouring of the object 

being shaded. Although these limitations exist, 

rasterisation is a much faster process than ray-tracing and 

produces reasonable outputs in a significantly faster time 

[4]. 

D. Generative Adversarial Networks 

This work demonstrates the advantages of using a 

Generative Adversarial Network (GAN) to that of a fully 

ray-traced algorithm as well as that of the rasterisation 

method. A GAN works by having two neural networks 

contest against each other. One of the networks is called a 

generator and the other a discriminator. The discriminator 

is trained to distinguish between real training examples 

and fake outputs from the generator. The generator is 

simultaneously trained to minimise the discriminator’s 

accuracy [7]. We demonstrate empirically that the GAN 

produces rendered images of reasonable quality to that of 

the ray-traced images at a fraction of the time and gives a 

superior quality output to that of the rasterisation method. 

III. METHOD 

A. Creation of the Data Set 

The creation of our data set was performed using 

Blender. We created a default scene with four walls and a 

floor so that we could have a scene to allow light to 

bounce around. We then choose a random number of 

objects to render onto the screen – between 50 and 250. 

The values of 50 to 250 were to ensure that the scene was 

suitably random from one image to the next. We 

randomly choose a position, rotation and colour for each 

of the objects, as well as one of six primitive shapes. The 

primitive shapes included a cube, cylinder, cone, uv-

sphere, ico-sphere, and torus. After the creation of the 

objects, the walls and floor were assigned a random 

colour, the camera would be randomly rotated ± 10 

degrees on the x-axis, and then between 0 and 360 

degrees on the z-axis. The Eevee render engine, which is 

a rasterisation engine, is then used to render four images 

at 64 samples, which include the Direct Illumination 

output, the normalised Depth Buffer, the Normal Map 

and a Diffuse Image [8]. These images can be seen in Fig. 

2 and Fig. 3. The Indirect illumination image is not 

generated by Eevee, but instead by Cycles and the 

generator network is never fed the indirect illumination as 

input. Sampling in Eevee refers to the use of temporal 

antialiasing, whereas sampling in Cycles refers to the 

number of rays that are shot from the camera to calculate 

lighting [8], [9]. The script then swaps over to the Cycles 

render engine which is a ray-tracing engine and renders 

the image again at 1024 samples to get a high-quality 

output image for training [9]. The output is saved, the 

scene is reset and then the above steps are repeated for 

each image. In total, 2509 image sets were created, where 

one image set contains the five images that were created 

from Eevee and Cycles, for a total of 12,545 images. 

Images were rendered at 2048 × 1024 and resized to 1024 

× 512 for training and testing of the network. 

 

Figure 2. Left: Depth Buffer, Middle: Diffuse Texture, Right: Normal 

Map. 

 

Figure 3. Left: Direct Illumination (Rasterisation) and Right: Indirect 

Illumination (Ray-tracing). 

B. Network Architecture 

Our network architecture is based on the Pix2Pix GAN 

for image-to-image translation with some slight 

modifications to the normalisation step discussed in 

section III-C [10]. It is based on a Conditional Generative 

Adversarial Network (CGAN) where our generated 

image is based on the four images generated from the 

Eevee render engine. From these four inputs, the GAN 

then attempts to map the input images to the ray-traced 

output. From this generated output, we then calculate the 

Binary Cross Entropy (BCE) as the Adversarial loss as 

well as the L1 loss since this encourages less blurring than 

the L2 loss to train the network [10]. 

C. Normalisation 

Normalisation has been shown to improve training 

speed [11]. Batch Normalisation (BatchNorm) performs a 

global normalisation along the batch dimension where the 

dimensions of our data set are in the tuple: (batch size, 

channel size, height, width). Instance normalisation 

(InstanceNorm) is similar to batch normalisation but is 
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instead calculated for each sample rather than in batches. 

Layer normalisation operates along the channel 

dimension. Group Normalisation (GroupNorm) is a 

mixture between layer normalisation and instance 

normalisation but the input channels are split into groups 

[11]. 

D. Generator Architecture 

The generator architecture is based on the Pix2Pix 

GANs generator which uses a U-Net architecture, but 

instead of using BatchNorm, we ended up using 

GroupNorm. We chose the number of groups to be 2 and 

this was decided from the use of the validation data set. 

We used GroupNorm since we trained our network on a 

batch size of one due to memory constraints. GroupNorm 

has been shown to perform better when batch sizes are 

small [11]. We update the generator network using the 

loss function: 

Loss = BCE(predicted fake,valid) + λ · L1,  

where λ = 100, as in the Pix2Pix paper [10]. The 

generator network has eight encoder steps starting from 

12 channels (the four RGB images) to 512 channels, and 

then eight decoder steps, from 512 channels to 3 channels 

out. 

E. Discriminator Architecture 

The discriminator architecture makes use of the 

PatchGan network to give a score as to whether the image 

is real or fake. For compactness, we define the predicted 

real image as pr and the predicted fake image as pf. We 

use the following loss function to update the network: 

Loss = 0.5(BCE(pr,valid) + BCE(pf,fake)) 

The discriminator is made up of 4 discriminator blocks 

where a block is made up of a convolution, an optional 

normalisation, and a leaky ReLU. Zero padding is then 

applied and a final convolution is performed. 

F. Training of the Network 

The network was implemented using PyTorch and was 

trained on 70% of the data whilst 15% was kept for 

validation and the other 15% was used as test data. The 

network uses the ADAM optimiser with a learning rate 

set to 0.0002 and betas = (0.5, 0.999) as in the Pix2Pix 

paper [10]. The network was trained for a total of 1440 

epochs which ran until the end of three days. The 

computations were performed using the High-

Performance Computing infrastructure provided by the 

Mathematical Sciences Support unit at the University of 

the Witwatersrand. The specific hardware used to train 

the model is given as follows: Intel Core i9-10940X CPU 

(14 Cores), NVIDIA RTX 3090 GPU (24GB) and 128 

GB of system RAM. Fig. 4 shows the loss training loss 

graphs. 

IV. METRICS 

In analysing our method and its performance against 

that of ray-tracing and rasterisation, we will be making 

use of five metrics. 

1) Timing: The recording of time is given in seconds. 

2) L1 Loss: 

 

The L1 loss is the summed absolute difference between 

each pixel in the predicted image against that of the ray-

traced image, i.e. ytrue, in this case, represents the ray-

traced image. 

 

Figure 4. Training Loss Graph, Blue Plot: Discriminator, Orange Plot: 

Generator. 

3) L2 Loss: 

 

The L2 loss is the summed squared absolute difference 

between each pixel of the predicted image and the ray-

traced image. 

4) Structural Similarity Index Measure [12]: The 

Structural Similarity Index Measure (SSIM) is used to 

measure the similarity between two images. Rather than 

looking at the difference between pixels, the SSIM will 

measure degradation as the perceived change in structural 

information: 

 

5) Frechet Inception Distance [13]: The Frechet 

Inception  ́ Distance (FID) between two distributions is 

used to evaluate the quality of generated samples where a 

lower FID means a smaller distance between real and 

generated distributions: 

 

where (µr,Σr) and (µg,Σg) are the mean and covariance of 

the real (r) and generated (g) data. 

V. EXPERIMENTAL RESULTS 

The following hardware was used to measure the speed 

of the network after training as well as to measure the 

time it took for the generation of the ray-traced images. 

Intel Core i5-8300H CPU (4 Cores), NVIDIA GTX 1050 

(4GB), and 24 GB system RAM. Table I shows the 

metrics averaged over the 375 testing images. 15% of the 

total data. Fig. 5 shows examples of the outputs for Table 

I. Table II is based on the Blender classroom scene where 

we trained on 40 images and averaged over 8 test images. 
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VI. RESULTS ANALYSIS 

We will be focusing our discussion for the values in 

Table I since the outcome of Table II is the same as Table 

I, but with different values. 

TABLE I.  METRICS BASED ON TEST DATA FOR SCENES SIMILAR TO 

FIG. 5 

 

TABLE II. METRICS BASED ON TEST DATA FOR SCENES SIMILAR TO 

FIG. 6 

 

A. Time 

It took Eevee around 0.27 seconds when rendering at 

eight samples to generate an image. This is longer than 

expected but understandable since Eevee is also focused 

on high quality rather than just rendering at the fastest 

speed possible. This can also be seen in Table II. The 

average time to process an image through the GAN was 

0.005 seconds, but since Eevee took 0.27 seconds which 

is a required input into our network, we have added the 

run times together to get a total of 0.275 seconds. If we 

were to instead use a real-time application like a game 

engine, we expect that an image is able to render at 60 

FPS or 0.016 seconds as is commonly seen in real-time 

applications, and since the images would already be in 

memory you would not spend time loading them. We 

estimate that it would take roughly 0.022 seconds to run 

the application with the GAN, which would result in 45 

FPS and is a reasonable speed for a real-time application. 

The ray-traced output took an average of 293.93 seconds 

to generate an image at 1024 samples, 48.61 seconds at 

64 samples and 33.91 seconds at 32 samples. Note that 

we target non-RTX hardware in particular. 

B. L1 and L2 

The average of the L1 loss for the rasterisation method 

is 111,491.26 compared to the GAN method which gave 

45,177.64. This shows that the GAN is significantly 

closer to the ray-traced output as the L1 loss demonstrates 

the absolute summed difference between the two results. 

The L2 shows the summed squared difference between 2 

images and is, therefore, more sensitive to outliers. The 

results of the L2 loss shows that the GAN performed 

better at 2142.61 compared to the rasterisation method 

which gave 16,310.54. This shows that the GAN gave a 

significant increase in quality when compared to the ray-

traced images. 

C. Structural Similarity Index Measure 

The SSIM results also show that the GAN result of 

0.9849 is closer to the ray-traced output compared to the 

rasterization method which gave a result of 0.9376. This 

shows that structurally, the GAN result is closer to the 

ray-traced output. Taking into account the time it takes to 

render the GAN image against that of the fully ray-traced 

image, the GAN gives comparable quality at a fraction of 

the time.  

D. Frechet Inception Distance 

The FID results show that the distance between the 

raytraced output and the GAN was only 0.0031 whilst the 

difference between the rasterisation method was 0.0203. 

This shows a difference of 0.0172 between the two 

results and again shows that the GAN method gives a 

significantly better quality than the rasterisation method 

and even though it is not exactly the same as the ray-

traced image, it runs in much less time. 

E. Visual Inspection 

Based on the visual output of the image, we can see 

that the GAN has correctly learnt how to apply the 

bouncing of colours from one object onto another as seen 

in Fig. 5. We see that the green sphere in the left image is 

lighter on the bottom because of the white floor. It is also 

interesting to see that although the colours of the GAN 

are closer to the raytraced image, some of the shadows 

are not as sharp as the ray-traced output. In the right 

image, we can see this with the shadow on the wall near 

the middle right of the image. This is due to the fact that 

the rasterisation has applied a soft shadowing effect or 

was not able to perfectly map the shadow onto the wall. 

Overall, the quality of the output is reasonably good. 

Zooming into the image shows that this is not as sharp as 

either the rasterisation method or the ray-traced image, 

but from the default resolution, the effect is less 

noticeable. 

 

Figure 5. Example output on test data. Top: Rasterisation, Middle: 

GAN, Bottom: Raytraced. 

Metrics Rasterisation GAN Ray-Traced 

Time 0.27 0.275 33.91 
L 1 111,491.26 45,177.64 0.0 
L 2 16,310.54 2142.61 0.0 
SSIM 0.9376 0.9849 1.0 
FID 0.0203 0.0031 0.0 

Metrics Rasterisation GAN Ray-Traced 

Time 14.08 14.085 48.31 
L 1 185,841.97 53,417.12 0.0 
L 2 40,632.40 4447.89 0.0 
SSIM 0.8495 0.9441 1.0 
FID 0.0480 0.0007 0.0 

©2022 Int. J. Electron. Electr. Eng. 4

International Journal of Electronics and Electrical Engineering Vol. 10, No. 1, March 2022



 

Figure 6. Blender classroom scene: Top: Rasterisation, Middle: GAN, 

Bottom: Raytraced. 

F. Network Adjustments 

Some adjustments were made to the Pix2Pix GAN to 

achieve the above. Specifically, as we mentioned before, 

we changed the BatchNorm to GroupNorm as this has 

been shown to produce better results when batches are 

small [11]. Previously we attempted to use InstanceNorm 

as discussed in the Pix2Pix paper, but the outputs 

generated random splotches or smeared results [10]. 

Although the splotches or smears decreased the longer 

the network was trained for, they never disappeared 

completely. Fig. 7 demonstrates this effect on the sphere 

still visible after 1180 epochs of training. 

 

Figure 7. Example of Splotches on Output using InstanceNorm. 

VII. LIMITATIONS 

Although the results above are promising, there are 

some limitations of the GAN that exist. The GAN at 

current only uses the set of input images to generate its 

output. Therefore, if there are objects outside of the 

viewing area of the input images, the GAN would not be 

able to take this into account. Another issue would be that 

reflective material would not be rendered correctly as the 

GAN would still be required to rely on the rasterisation 

method to generate these reflections and reflections upon 

reflection would probably fail without the use of ray-

tracing. Also, due to the fact that GANs are an 

approximation, they would not be a good method for 

scenarios that require an exact solution. We also note that 

we did not test for temporal coherence, but we note a 

similar set of research was done in Deep Illumination and 

they found that there were no issues [1]. 

VIII. CONCLUSION AND FUTURE WORK 

As can be seen by the results, the GAN is able to 

produce an image quality similar to that of a ray-traced 

image quality at a fraction of the time. There are edge 

cases that are mentioned in section VII. It was not tested 

to see how well the GAN applies to different styles of 

artwork, but we believe that it is possible for a GAN to be 

trained per scene and then export that training in the 

compilation to be used on lower hardware. It would be 

interesting to see in future work if it is possible to 

represent the 3D world space as some feature set that 

could be fed to the GAN. This would allow the GAN to 

have more knowledge of objects not shown on screen. As 

GANs are an approximation they could be used as a 

substitute for raytracing for artists performing animation 

and swapped out for ray-tracing in the final renders. This 

could save significant time whilst allowing an 

approximate output to be used during development. 

Alternatively, game manufacturers could train and ship a 

GAN as part of their rendering engines to provide 

enhanced graphics on older devices that do not have 

access to RT cores.  

CONFLICT OF INTEREST 

The authors declare no conflict of interest. 

AUTHOR CONTRIBUTIONS 

Jared Harris-Dewey conducted the research and 

performed the analysis. Richard Klein supervised the 

research. Both authors contributed to the 

conceptualisation of the work and approved the final 

version or the paper. 

REFERENCES 

[1] M. M. Thomas and A. G. Forbes, “Deep illumination: 

Approximating dynamic global illumination with generative 

adversarial network,” arXiv, arXiv:1710.09834, 2018. 

[2] J. Sundkvist, “An evaluation of real-time global illumination 

techniques,” bachelor thesis, Umea University, Sweden, 2019. 

[3] E. Haines and T. Akenine-Moller. (March 2019). An introduction 

to real-time raytracing. [Online]. Available: 

https://www.apress.com/br/blog/all-blog-posts/an-introduction-to-

real-time-ray-tracing/16559492/ 

[4] J. Lampel. Cycles vs. eevee - 15 limitations of real time rendering 

in blender 2.8. [Online]. Available: https://cgcookie.com/articles/ 

blender-cycles-vs-eevee-15-limitations-of-real-time-rendering 

©2022 Int. J. Electron. Electr. Eng. 5

International Journal of Electronics and Electrical Engineering Vol. 10, No. 1, March 2022

https://www.apress.com/br/blog/all-blog-posts/an-introduction-to-real-time-ray-tracing/16559492/
https://www.apress.com/br/blog/all-blog-posts/an-introduction-to-real-time-ray-tracing/16559492/
https://www.apress.com/br/blog/all-blog-posts/an-introduction-to-real-time-ray-tracing/16559492/
https://cgcookie.com/articles/blender-cycles-vs-eevee-15-limitations-of-real-time-rendering
https://cgcookie.com/articles/blender-cycles-vs-eevee-15-limitations-of-real-time-rendering
https://cgcookie.com/articles/blender-cycles-vs-eevee-15-limitations-of-real-time-rendering


[5] B. Chang. Lighting in 3d graphics. [Online]. Available: 

http//www.bcchang.com/immersive/ygbasics/lighting.html 

[6] OpenGL. Coordinate systems. [Online]. Available:  

https://learnopengl.com/Getting-started/Coordinate-Systems 

[7] I. J. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-

Farley, S. Ozair, A. Courville, and Y. Bengio, “Generative 

adversarial networks,” arXiv, arXiv:1406.2661, 2014. 

[8] Blender. (Sep. 2021). Introduction. [Online]. Available: 

https://docs.blender.org/manual/en/latest/render/eevee/introductio

n.html 

[9] Artistic Blender. (Apr. 2021). Blender: A cycles render settings 

guide. [Online]. Available: https://artisticrender.com/blender-a-

cycles-render-settings-guide/ 

[10] P. Isola, J. Zhu, T. Zhou, and A. A. Efros, “Image-to-Image 

translation with conditional adversarial networks,” in Proc. IEEE 

Conference on Computer Vision and Pattern Recognition, 2017, 

pp. 5967-5976. 

[11] Y. Wu and K. He, “Group normalization,” in Computer Vision – 

ECCV 2018, Springer, Cham, 2018, vol. 11217, pp. 3-18. 

[12] Z. Wang, A. Bovik, H. Sheikh, and E. Simoncelli, “Image quality 

assessment: From error visibility to structural similarity,” IEEE 

Transactions on Image Processing, vol. 13, no. 4, pp. 600-612, 

2004. 

[13] M. Heusel, H. Ramsauer, T. Unterthiner, B. Nessler, and S. 

Hochreiter, “GANs trained by a two time-scale update rule 

converge to a local nash equilibrium,” arXiv, arXiv:1706.08500v6, 

2018. 

 

Copyright © 2022 by the authors. This is an open access article 

distributed under the Creative Commons Attribution License (CC BY-

NC-ND 4.0), which permits use, distribution and reproduction in any 

medium, provided that the article is properly cited, the use is non-

commercial and no modifications or adaptations are made. 

 

Jared R. Harris-Dewey is a fourth-year 

postgraduate student at the University of 

Witwatersrand, Johannesburg, South Africa. 

He received a bachelor’s degree in computer 

science and applied mathematics and is 

currently interested in computer vision and 

graphics as well as machine learning. 

 

Richard Klein is a Senior Lecturer in 

Computer Science and Applied Mathematics 

at the University of the Witwatersrand, 

Johannesburg, South Africa. He holds a BSc 

(Computer Science and Applied 

Mathematics), BScHons (Computer Science), 

MSc (Computer Science) and PhD. His 

research focus is in computer vision, machine 

learning and artificial intelligence. 

 

 

©2022 Int. J. Electron. Electr. Eng. 6

International Journal of Electronics and Electrical Engineering Vol. 10, No. 1, March 2022

http://www.bcchang.com/immersive/ygbasics/lighting.html
https://learnopengl.com/Getting-started/Coordinate-Systems
https://learnopengl.com/Getting-started/Coordinate-Systems
https://docs.blender.org/manual/en/latest/render/eevee/introduction.html
https://docs.blender.org/manual/en/latest/render/eevee/introduction.html
https://artisticrender.com/blender-a-cycles-render-settings-guide/
https://artisticrender.com/blender-a-cycles-render-settings-guide/
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/



