
Generative Adversarial Networks for

Non-Raytraced Global Illumination on Older

GPU Hardware

Jared Harris-Dewey and Richard Klein
School of Computer Science and Applied Mathematics, University of the Witwatersrand, Johannesburg, South Africa

Email: jaredrhd@gmail.com

Abstract—We give an overview of the different rendering

methods and we demonstrate that the use of a Generative

Adversarial Networks (GAN) for Global Illumination (GI)

gives a superior quality rendered image to that of a

rasterisations image. We utilise the Pix2Pix architecture and

specify the hyper-parameters and methodology used to

mimic ray-traced images from a set of input features. We

also demonstrate that the GANs quality is comparable to the

quality of the ray-traced images, but is able to produce the

image, at a fraction of the time. Source Code:

https://github.com/Jaredrhd/Global-Illumination-using-

Pix2Pix-GAN

Index Terms—Generative Adversarial Networks, Global

Illumination, Indirect Lighting, Ray-tracing, Rendering,

Machine Learning

I. INTRODUCTION

The rendering of realistic 3D environments remains a

challenging process for real-time applications [1]. For

example, global illumination is the effect of calculating

more realistic lighting, by having light bounce off one

object onto another object [2]. This effect adds more

realism to an image since colours from one object have

the ability to influence those of another object. To create

this effect is a costly process. Currently, there are two

major methods that are used to render a 3D environment.

These are rasterisation and ray-tracing [3]. Rasterisation

is a fast way to render a 3D scene to a 2D screen, but it

lacks some graphical effects like global illumination.

Such effects are usually performed in a separate step like

post-processing or instead are baked into the scene [4].

The baking of global illumination is the process in which

global illumination is calculated for static objects (non-

moving objects) during compilation and does not happen

in realtime. This means that dynamic objects do not get

global illumination. Ray-tracing on the other hand creates

such effects naturally due to the way that ray-tracing

models physical light, but ray-tracing is a costly process

[4]. In this paper, we demonstrate that a Generative

Adversarial Network produces quality similar to ray-

tracing, but in a fraction of the time on older GPU

hardware. The ability to be able to run this on older GPU

 Manuscript received July 1, 2021; revised February 16, 2022.

hardware is beneficial as it can decrease the amount of e-

waste and prolong the lifespan of these older devices.

The paper is laid out as follows. In section II, we give

an overview of the relevant rendering techniques. Section

III discusses the implementation of our Generative

Adversarial Network. Section IV explains our

performance metrics. Section V presents our results.

Sections VI, VII and VIII present discussions, limitations

and conclusions of our work.

II. BACKGROUND

A. Global Illumination

Global illumination or indirect illumination is the

effect of calculating more realistic lighting [2]. The scene

in Fig. 1 is set up with a directional light, then rendered

using a rasterisation method and a ray-tracing method.

We can see that in Fig. 1, the pink floor adds a tinge of its

colour to the other objects in the scene. This is expected

since the light would bounce off the floor onto other

objects in the scene. Global illumination is different from

ambient light where ambient light is just a global light

throughout the scene to ensure that the scene is not too

dark [5].

Figure 1. Top: Direct Illumination (Rasterisation) and Bottom: Indirect

Illumination (Ray-tracing).

©2022 Int. J. Electron. Electr. Eng. 1

International Journal of Electronics and Electrical Engineering Vol. 10, No. 1, March 2022

doi: 10.18178/ijeee.10.1.1-6

https://github.com/Jaredrhd/Global-Illumination-using-Pix2Pix-GAN
https://github.com/Jaredrhd/Global-Illumination-using-Pix2Pix-GAN
https://github.com/Jaredrhd/Global-Illumination-using-Pix2Pix-GAN

B. Ray-Tracing

Ray-tracing is a method that attempts to simulate the

physical behaviour of light by shooting a ray and tracing

the path that it follows [3]. By allowing the ray to create

more rays for each object that it hits, more realism can be

added to the final rendered image. This is similar to

allowing light to bounce off objects. The process of

performing ray-tracing is costly. Recently, specialised

hardware (called RT cores) has been created to allow for

ray-tracing to be approximated in real-time [6]. Our

demonstration will be on older GPU hardware that does

not have access to such specialised cores.

C. Rasterisation

Rasterisation is the older method of rendering 3D

scenes. The idea is given a 3D environment, you can

apply a pipelined process through transformations and

projections to arrive at a 2D output [3]. The issue with

this approach is that this is a process to map the 3D

environment to 2D, without the computation of colours or

lighting. Lighting and colouring of an object are instead

performed in another stage called shading. Shaders

usually contain information about the object they are

working on and do not take into account surrounding

objects. Since shaders do not take into account

surrounding objects, they fail to reproduce effects such as

global illumination. This is due to the fact that other

objects cannot contribute to the colouring of the object

being shaded. Although these limitations exist,

rasterisation is a much faster process than ray-tracing and

produces reasonable outputs in a significantly faster time

[4].

D. Generative Adversarial Networks

This work demonstrates the advantages of using a

Generative Adversarial Network (GAN) to that of a fully

ray-traced algorithm as well as that of the rasterisation

method. A GAN works by having two neural networks

contest against each other. One of the networks is called a

generator and the other a discriminator. The discriminator

is trained to distinguish between real training examples

and fake outputs from the generator. The generator is

simultaneously trained to minimise the discriminator’s

accuracy [7]. We demonstrate empirically that the GAN

produces rendered images of reasonable quality to that of

the ray-traced images at a fraction of the time and gives a

superior quality output to that of the rasterisation method.

III. METHOD

A. Creation of the Data Set

The creation of our data set was performed using

Blender. We created a default scene with four walls and a

floor so that we could have a scene to allow light to

bounce around. We then choose a random number of

objects to render onto the screen – between 50 and 250.

The values of 50 to 250 were to ensure that the scene was

suitably random from one image to the next. We

randomly choose a position, rotation and colour for each

of the objects, as well as one of six primitive shapes. The

primitive shapes included a cube, cylinder, cone, uv-

sphere, ico-sphere, and torus. After the creation of the

objects, the walls and floor were assigned a random

colour, the camera would be randomly rotated ± 10

degrees on the x-axis, and then between 0 and 360

degrees on the z-axis. The Eevee render engine, which is

a rasterisation engine, is then used to render four images

at 64 samples, which include the Direct Illumination

output, the normalised Depth Buffer, the Normal Map

and a Diffuse Image [8]. These images can be seen in Fig.

2 and Fig. 3. The Indirect illumination image is not

generated by Eevee, but instead by Cycles and the

generator network is never fed the indirect illumination as

input. Sampling in Eevee refers to the use of temporal

antialiasing, whereas sampling in Cycles refers to the

number of rays that are shot from the camera to calculate

lighting [8], [9]. The script then swaps over to the Cycles

render engine which is a ray-tracing engine and renders

the image again at 1024 samples to get a high-quality

output image for training [9]. The output is saved, the

scene is reset and then the above steps are repeated for

each image. In total, 2509 image sets were created, where

one image set contains the five images that were created

from Eevee and Cycles, for a total of 12,545 images.

Images were rendered at 2048 × 1024 and resized to 1024

× 512 for training and testing of the network.

Figure 2. Left: Depth Buffer, Middle: Diffuse Texture, Right: Normal

Map.

Figure 3. Left: Direct Illumination (Rasterisation) and Right: Indirect

Illumination (Ray-tracing).

B. Network Architecture

Our network architecture is based on the Pix2Pix GAN

for image-to-image translation with some slight

modifications to the normalisation step discussed in

section III-C [10]. It is based on a Conditional Generative

Adversarial Network (CGAN) where our generated

image is based on the four images generated from the

Eevee render engine. From these four inputs, the GAN

then attempts to map the input images to the ray-traced

output. From this generated output, we then calculate the

Binary Cross Entropy (BCE) as the Adversarial loss as

well as the L1 loss since this encourages less blurring than

the L2 loss to train the network [10].

C. Normalisation

Normalisation has been shown to improve training

speed [11]. Batch Normalisation (BatchNorm) performs a

global normalisation along the batch dimension where the

dimensions of our data set are in the tuple: (batch size,

channel size, height, width). Instance normalisation

(InstanceNorm) is similar to batch normalisation but is

©2022 Int. J. Electron. Electr. Eng. 2

International Journal of Electronics and Electrical Engineering Vol. 10, No. 1, March 2022

instead calculated for each sample rather than in batches.

Layer normalisation operates along the channel

dimension. Group Normalisation (GroupNorm) is a

mixture between layer normalisation and instance

normalisation but the input channels are split into groups

[11].

D. Generator Architecture

The generator architecture is based on the Pix2Pix

GANs generator which uses a U-Net architecture, but

instead of using BatchNorm, we ended up using

GroupNorm. We chose the number of groups to be 2 and

this was decided from the use of the validation data set.

We used GroupNorm since we trained our network on a

batch size of one due to memory constraints. GroupNorm

has been shown to perform better when batch sizes are

small [11]. We update the generator network using the

loss function:

Loss = BCE(predicted fake,valid) + λ · L1,

where λ = 100, as in the Pix2Pix paper [10]. The

generator network has eight encoder steps starting from

12 channels (the four RGB images) to 512 channels, and

then eight decoder steps, from 512 channels to 3 channels

out.

E. Discriminator Architecture

The discriminator architecture makes use of the

PatchGan network to give a score as to whether the image

is real or fake. For compactness, we define the predicted

real image as pr and the predicted fake image as pf. We

use the following loss function to update the network:

Loss = 0.5(BCE(pr,valid) + BCE(pf,fake))

The discriminator is made up of 4 discriminator blocks

where a block is made up of a convolution, an optional

normalisation, and a leaky ReLU. Zero padding is then

applied and a final convolution is performed.

F. Training of the Network

The network was implemented using PyTorch and was

trained on 70% of the data whilst 15% was kept for

validation and the other 15% was used as test data. The

network uses the ADAM optimiser with a learning rate

set to 0.0002 and betas = (0.5, 0.999) as in the Pix2Pix

paper [10]. The network was trained for a total of 1440

epochs which ran until the end of three days. The

computations were performed using the High-

Performance Computing infrastructure provided by the

Mathematical Sciences Support unit at the University of

the Witwatersrand. The specific hardware used to train

the model is given as follows: Intel Core i9-10940X CPU

(14 Cores), NVIDIA RTX 3090 GPU (24GB) and 128

GB of system RAM. Fig. 4 shows the loss training loss

graphs.

IV. METRICS

In analysing our method and its performance against

that of ray-tracing and rasterisation, we will be making

use of five metrics.

1) Timing: The recording of time is given in seconds.

2) L1 Loss:

The L1 loss is the summed absolute difference between

each pixel in the predicted image against that of the ray-

traced image, i.e. ytrue, in this case, represents the ray-

traced image.

Figure 4. Training Loss Graph, Blue Plot: Discriminator, Orange Plot:

Generator.

3) L2 Loss:

The L2 loss is the summed squared absolute difference

between each pixel of the predicted image and the ray-

traced image.

4) Structural Similarity Index Measure [12]: The

Structural Similarity Index Measure (SSIM) is used to

measure the similarity between two images. Rather than

looking at the difference between pixels, the SSIM will

measure degradation as the perceived change in structural

information:

5) Frechet Inception Distance [13]: The Frechet

Inception ́ Distance (FID) between two distributions is

used to evaluate the quality of generated samples where a

lower FID means a smaller distance between real and

generated distributions:

where (µr,Σr) and (µg,Σg) are the mean and covariance of

the real (r) and generated (g) data.

V. EXPERIMENTAL RESULTS

The following hardware was used to measure the speed

of the network after training as well as to measure the

time it took for the generation of the ray-traced images.

Intel Core i5-8300H CPU (4 Cores), NVIDIA GTX 1050

(4GB), and 24 GB system RAM. Table I shows the

metrics averaged over the 375 testing images. 15% of the

total data. Fig. 5 shows examples of the outputs for Table

I. Table II is based on the Blender classroom scene where

we trained on 40 images and averaged over 8 test images.

©2022 Int. J. Electron. Electr. Eng. 3

International Journal of Electronics and Electrical Engineering Vol. 10, No. 1, March 2022

VI. RESULTS ANALYSIS

We will be focusing our discussion for the values in

Table I since the outcome of Table II is the same as Table

I, but with different values.

TABLE I. METRICS BASED ON TEST DATA FOR SCENES SIMILAR TO

FIG. 5

TABLE II. METRICS BASED ON TEST DATA FOR SCENES SIMILAR TO

FIG. 6

A. Time

It took Eevee around 0.27 seconds when rendering at

eight samples to generate an image. This is longer than

expected but understandable since Eevee is also focused

on high quality rather than just rendering at the fastest

speed possible. This can also be seen in Table II. The

average time to process an image through the GAN was

0.005 seconds, but since Eevee took 0.27 seconds which

is a required input into our network, we have added the

run times together to get a total of 0.275 seconds. If we

were to instead use a real-time application like a game

engine, we expect that an image is able to render at 60

FPS or 0.016 seconds as is commonly seen in real-time

applications, and since the images would already be in

memory you would not spend time loading them. We

estimate that it would take roughly 0.022 seconds to run

the application with the GAN, which would result in 45

FPS and is a reasonable speed for a real-time application.

The ray-traced output took an average of 293.93 seconds

to generate an image at 1024 samples, 48.61 seconds at

64 samples and 33.91 seconds at 32 samples. Note that

we target non-RTX hardware in particular.

B. L1 and L2

The average of the L1 loss for the rasterisation method

is 111,491.26 compared to the GAN method which gave

45,177.64. This shows that the GAN is significantly

closer to the ray-traced output as the L1 loss demonstrates

the absolute summed difference between the two results.

The L2 shows the summed squared difference between 2

images and is, therefore, more sensitive to outliers. The

results of the L2 loss shows that the GAN performed

better at 2142.61 compared to the rasterisation method

which gave 16,310.54. This shows that the GAN gave a

significant increase in quality when compared to the ray-

traced images.

C. Structural Similarity Index Measure

The SSIM results also show that the GAN result of

0.9849 is closer to the ray-traced output compared to the

rasterization method which gave a result of 0.9376. This

shows that structurally, the GAN result is closer to the

ray-traced output. Taking into account the time it takes to

render the GAN image against that of the fully ray-traced

image, the GAN gives comparable quality at a fraction of

the time.

D. Frechet Inception Distance

The FID results show that the distance between the

raytraced output and the GAN was only 0.0031 whilst the

difference between the rasterisation method was 0.0203.

This shows a difference of 0.0172 between the two

results and again shows that the GAN method gives a

significantly better quality than the rasterisation method

and even though it is not exactly the same as the ray-

traced image, it runs in much less time.

E. Visual Inspection

Based on the visual output of the image, we can see

that the GAN has correctly learnt how to apply the

bouncing of colours from one object onto another as seen

in Fig. 5. We see that the green sphere in the left image is

lighter on the bottom because of the white floor. It is also

interesting to see that although the colours of the GAN

are closer to the raytraced image, some of the shadows

are not as sharp as the ray-traced output. In the right

image, we can see this with the shadow on the wall near

the middle right of the image. This is due to the fact that

the rasterisation has applied a soft shadowing effect or

was not able to perfectly map the shadow onto the wall.

Overall, the quality of the output is reasonably good.

Zooming into the image shows that this is not as sharp as

either the rasterisation method or the ray-traced image,

but from the default resolution, the effect is less

noticeable.

Figure 5. Example output on test data. Top: Rasterisation, Middle:

GAN, Bottom: Raytraced.

Metrics Rasterisation GAN Ray-Traced

Time 0.27 0.275 33.91
L 1 111,491.26 45,177.64 0.0
L 2 16,310.54 2142.61 0.0
SSIM 0.9376 0.9849 1.0
FID 0.0203 0.0031 0.0

Metrics Rasterisation GAN Ray-Traced

Time 14.08 14.085 48.31
L 1 185,841.97 53,417.12 0.0
L 2 40,632.40 4447.89 0.0
SSIM 0.8495 0.9441 1.0
FID 0.0480 0.0007 0.0

©2022 Int. J. Electron. Electr. Eng. 4

International Journal of Electronics and Electrical Engineering Vol. 10, No. 1, March 2022

Figure 6. Blender classroom scene: Top: Rasterisation, Middle: GAN,

Bottom: Raytraced.

F. Network Adjustments

Some adjustments were made to the Pix2Pix GAN to

achieve the above. Specifically, as we mentioned before,

we changed the BatchNorm to GroupNorm as this has

been shown to produce better results when batches are

small [11]. Previously we attempted to use InstanceNorm

as discussed in the Pix2Pix paper, but the outputs

generated random splotches or smeared results [10].

Although the splotches or smears decreased the longer

the network was trained for, they never disappeared

completely. Fig. 7 demonstrates this effect on the sphere

still visible after 1180 epochs of training.

Figure 7. Example of Splotches on Output using InstanceNorm.

VII. LIMITATIONS

Although the results above are promising, there are

some limitations of the GAN that exist. The GAN at

current only uses the set of input images to generate its

output. Therefore, if there are objects outside of the

viewing area of the input images, the GAN would not be

able to take this into account. Another issue would be that

reflective material would not be rendered correctly as the

GAN would still be required to rely on the rasterisation

method to generate these reflections and reflections upon

reflection would probably fail without the use of ray-

tracing. Also, due to the fact that GANs are an

approximation, they would not be a good method for

scenarios that require an exact solution. We also note that

we did not test for temporal coherence, but we note a

similar set of research was done in Deep Illumination and

they found that there were no issues [1].

VIII. CONCLUSION AND FUTURE WORK

As can be seen by the results, the GAN is able to

produce an image quality similar to that of a ray-traced

image quality at a fraction of the time. There are edge

cases that are mentioned in section VII. It was not tested

to see how well the GAN applies to different styles of

artwork, but we believe that it is possible for a GAN to be

trained per scene and then export that training in the

compilation to be used on lower hardware. It would be

interesting to see in future work if it is possible to

represent the 3D world space as some feature set that

could be fed to the GAN. This would allow the GAN to

have more knowledge of objects not shown on screen. As

GANs are an approximation they could be used as a

substitute for raytracing for artists performing animation

and swapped out for ray-tracing in the final renders. This

could save significant time whilst allowing an

approximate output to be used during development.

Alternatively, game manufacturers could train and ship a

GAN as part of their rendering engines to provide

enhanced graphics on older devices that do not have

access to RT cores.

CONFLICT OF INTEREST

The authors declare no conflict of interest.

AUTHOR CONTRIBUTIONS

Jared Harris-Dewey conducted the research and

performed the analysis. Richard Klein supervised the

research. Both authors contributed to the

conceptualisation of the work and approved the final

version or the paper.

REFERENCES

[1] M. M. Thomas and A. G. Forbes, “Deep illumination:

Approximating dynamic global illumination with generative

adversarial network,” arXiv, arXiv:1710.09834, 2018.

[2] J. Sundkvist, “An evaluation of real-time global illumination

techniques,” bachelor thesis, Umea University, Sweden, 2019.

[3] E. Haines and T. Akenine-Moller. (March 2019). An introduction

to real-time raytracing. [Online]. Available:

https://www.apress.com/br/blog/all-blog-posts/an-introduction-to-

real-time-ray-tracing/16559492/

[4] J. Lampel. Cycles vs. eevee - 15 limitations of real time rendering

in blender 2.8. [Online]. Available: https://cgcookie.com/articles/

blender-cycles-vs-eevee-15-limitations-of-real-time-rendering

©2022 Int. J. Electron. Electr. Eng. 5

International Journal of Electronics and Electrical Engineering Vol. 10, No. 1, March 2022

https://www.apress.com/br/blog/all-blog-posts/an-introduction-to-real-time-ray-tracing/16559492/
https://www.apress.com/br/blog/all-blog-posts/an-introduction-to-real-time-ray-tracing/16559492/
https://www.apress.com/br/blog/all-blog-posts/an-introduction-to-real-time-ray-tracing/16559492/
https://cgcookie.com/articles/blender-cycles-vs-eevee-15-limitations-of-real-time-rendering
https://cgcookie.com/articles/blender-cycles-vs-eevee-15-limitations-of-real-time-rendering
https://cgcookie.com/articles/blender-cycles-vs-eevee-15-limitations-of-real-time-rendering

[5] B. Chang. Lighting in 3d graphics. [Online]. Available:

http//www.bcchang.com/immersive/ygbasics/lighting.html

[6] OpenGL. Coordinate systems. [Online]. Available:

https://learnopengl.com/Getting-started/Coordinate-Systems

[7] I. J. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-

Farley, S. Ozair, A. Courville, and Y. Bengio, “Generative

adversarial networks,” arXiv, arXiv:1406.2661, 2014.

[8] Blender. (Sep. 2021). Introduction. [Online]. Available:

https://docs.blender.org/manual/en/latest/render/eevee/introductio

n.html

[9] Artistic Blender. (Apr. 2021). Blender: A cycles render settings

guide. [Online]. Available: https://artisticrender.com/blender-a-

cycles-render-settings-guide/

[10] P. Isola, J. Zhu, T. Zhou, and A. A. Efros, “Image-to-Image

translation with conditional adversarial networks,” in Proc. IEEE

Conference on Computer Vision and Pattern Recognition, 2017,

pp. 5967-5976.

[11] Y. Wu and K. He, “Group normalization,” in Computer Vision –

ECCV 2018, Springer, Cham, 2018, vol. 11217, pp. 3-18.

[12] Z. Wang, A. Bovik, H. Sheikh, and E. Simoncelli, “Image quality

assessment: From error visibility to structural similarity,” IEEE

Transactions on Image Processing, vol. 13, no. 4, pp. 600-612,

2004.

[13] M. Heusel, H. Ramsauer, T. Unterthiner, B. Nessler, and S.

Hochreiter, “GANs trained by a two time-scale update rule

converge to a local nash equilibrium,” arXiv, arXiv:1706.08500v6,

2018.

Copyright © 2022 by the authors. This is an open access article

distributed under the Creative Commons Attribution License (CC BY-

NC-ND 4.0), which permits use, distribution and reproduction in any

medium, provided that the article is properly cited, the use is non-

commercial and no modifications or adaptations are made.

Jared R. Harris-Dewey is a fourth-year

postgraduate student at the University of

Witwatersrand, Johannesburg, South Africa.

He received a bachelor’s degree in computer

science and applied mathematics and is

currently interested in computer vision and

graphics as well as machine learning.

Richard Klein is a Senior Lecturer in

Computer Science and Applied Mathematics

at the University of the Witwatersrand,

Johannesburg, South Africa. He holds a BSc

(Computer Science and Applied

Mathematics), BScHons (Computer Science),

MSc (Computer Science) and PhD. His

research focus is in computer vision, machine

learning and artificial intelligence.

©2022 Int. J. Electron. Electr. Eng. 6

International Journal of Electronics and Electrical Engineering Vol. 10, No. 1, March 2022

http://www.bcchang.com/immersive/ygbasics/lighting.html
https://learnopengl.com/Getting-started/Coordinate-Systems
https://learnopengl.com/Getting-started/Coordinate-Systems
https://docs.blender.org/manual/en/latest/render/eevee/introduction.html
https://docs.blender.org/manual/en/latest/render/eevee/introduction.html
https://artisticrender.com/blender-a-cycles-render-settings-guide/
https://artisticrender.com/blender-a-cycles-render-settings-guide/
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/

