

Development of Verification Environment for

AXI Bus Using SystemVerilog

Xu Chen, Zheng Xie, and Xin-An Wang
Key Lab of Integrated Micro-Systems Science Engineering and Applications

Peking University Shenzhen Graduate School, Shenzhen, China

Email: chenxu211@gmail.com; anxinwang@pku.edu.cn

Abstract—System-on-a-Chip (SoC) design has become more

and more complexly. How to verify a design effectively has

become a serious challenge. In this paper, how to build up

the effective verification environment of AXI using

SystemVerilog is introduced. Firstly, the design under verify

(DUV) AXI bus is introduced. Then a comprehensive

analysis of the verification plan has been made according to

the protocol. The proposed integrated verification

environment with Functional coverage, score-boarding,

assertions and constrained random vectors generation is

implemented. With this environment, a high coverage and

less time spending verification has been achieved.

Index Terms—SystemVerilog, SoC, AXI, Verification

Environment

I. INTRODUCTION

Verification has become the dominant cost in the

design process. On current projects, verification

engineers outnumber designers, with this ratio reaching

two or three to one for the most complex designs [1]. So

an effective verification environment is needed.

As a set of extensions to the Verilog HDL,

SystemVerilog gains the advantage of OOP, which can

play a role of hardware description language as well as

hardware verification language [2]. It can conveniently

describe design functions and scenarios, which is

considerably suitable and effective for verification

engineer.

In this paper, how to build up the verification

environment of AXI bus using SystemVerilog is

introduced. Functional coverage, score-boarding,

assertions and constrained random vectors generation is

implemented with the proposed integrated verification

environment.

The remaining part of the paper is organized into the

following sections. In section II, a brief introduction of

verification plan of the AXI bus is described, while

section III addresses the proposed verification

environment in details. The verification results are

presented in section IV and summaries are drawn in

section V.

Manuscript received March 19, 2013; revised May 25, 2013.

II. THE VERIFICATION PLAN

The AMBA AXI protocol is targeted at

high-performance, high-frequency system designs and

includes a number of features that make it suitable for a

high-speed submicron interconnect [3]. The SoC

architecture is shown in the Fig. 1. It is an AMBA based

SoC that include the AXI bus with two masters and three

slaves.

RISC DMA

AXI

SRAM
AXItoAPB

bridge
SPI0

APB

UART SPI1IIC

master master

master

slave slave slave

slave slave slave

GPIO

slave

INTC

slave

RTC

slave

WDT

slave

TIMER

slave

Figure 1. SoC architecture

Following the specification of the AXI bus, the

functional verification plan of AXI in this paper include:

Two kinds of address mode: aligned and unaligned.

Three kinds of burst type: FIXED, INCR and WRAP.

Sixteen choices of burst length in the range of 1-16.

Several choices of burst size according to the data bus

width.

Four kinds of response types: OKAY, EXOKAY,

SLVERR and DECERR.

Priorities between two masters and three slaves.

The test plan or verification plan acts as a coverage

model describing the functionality of the design to be

covered through its individual test points which serve as

coverage points in that coverage space [4].

III. THE VERIFICATION ENVIRONMENT

The verification environment is shown in Fig. 2. This

environment is organized in a hierarchical layered

structure which helps to maintain and reuse it with

International Journal of Electronics and Electrical Engineering Vol. 1, No. 2, June 2013

112©2013 Engineering and Technology Publishing
doi: 10.12720/ijeee.1.2.112-114

mailto:chenxu211@gmail.com
mailto:anxinwang@pku.edu.cn

different designs under verify, following the

recommendations show in [5]. The following subsections

explain the functionality of four primary components in

the verification environment.

AXI master

BFM
DUV

AXI slave

BFM

write/read/

getData

putData/

getData

AXI master

transactions

AXI slave

transactions

AXI

ScoreBoard

AXI

assertion

transaction

generator

testcase

AXI master AXI slave

fu
n

ctio
n

a
l co

v
era

g
e

Figure 2. The testbench architecture

A. AXI Master

The AXI master mainly contains two classes,

AXI_m_busBFM and AXI_m_env. The AXI master BFM

is implemented by the AXI_m_busBFM class, and the

AXI_m_env defines the commands of write, read and

getData. The AXI_m_busBFM class has a main task

named startBFM which starts one loop for each channel

parallelly(AXI has five separated channels). Every loop

has the similar function, which is getting the transaction

data and calling the task which generates the channel

timings. The relationship of these tasks is shown in Fig. 3.

And the timing control of the AXI master BFM is

generated randomly.

write_addr_

loop

writeAddr

write_data_

loop

writeData

write_resp_

loop

writeResp

read_addr_

loop

readAddr

read_data_

loop

readData

wrAddr wrData rdAddr

WrRespArray

Box

RdDataArray

Box

wrResp rdData

Figure 3. The relationship of tasks in AXI_m_busBFM

The AXI master receives high-level data through the

commands AXI_m_env defines and breaks into signals

that are sent to the DUV through the interfaces with the

help of AXI_m_busBFM.

B. AXI Slave

The AXI slave is built up with an AXI_s_busBFM

class and an AXI_s_env class. The AXI slave BFM is

implemented by the AXI_s_busBFM class, and the

AXI_s_env defines the commands of putData, getData

and setWr/RdResp. The AXI_s_busBFM class also has a

startBFM task which starts seven loops to simulate the

AXI slave behavior. Fig. 4 shows the data flow of the

seven loops in AXI_s_busBFM. And the timing control

of the AXI slave BFM is generated randomly just the

same as that of the master BFM.

write_addr

_loop

write_data

_loop

write_loop

write_resp

_loop

write data

read_addr

_loop

internal

memory

read_loop

read_data

_loop

 data

read

address
read

data

write

address

write

response

Figure 4. The data flow in AXI_s_busBFM

The AXI slave receives the control/data information

from the DUV according to the AXI protocol, and then

puts the write data to the internal memory or gets the read

data from the memory. The AXI slave internal memory

can be set by using the command putData, and the

write/read responses can also be set with the command

setWr/RdResp.

C. AXI Assertion

SystemVerilog assertion (SVA) is a declaration for the

expected behavior. In this paper, assertions are applied to

detect whether the signals are correct according to the

AXI protocol. For example, a write transaction with burst

type WRAP must have an aligned address can be

expressed as presented in Fig. 5.

 property AXI_ERRM_AWADRR_WRAP_ALIGN;

 @(posedge `AXI_SVA_CLK)

 !($isunknown({AWVALID,AWBURST,AWADDR})) &

 AWVALID & (AWBURST == `AXI_ABURST_WRAP)

 |-> ((AWADDR[6:0] & AlignMaskW) == AWADDR[6:0]);

 endproperty

 axi_errm_awadrr_wrap_align: assert property

(AXI_ERRM_AWADRR_WRAP_ALIGN) else

 $error("AXI_ERRM_AWADDR_WRAP_ALIGN. ");

Figure 5. An example of assertion in the testbench

D. AXI Scoreboard

The AXI scoreboard realizes the comparisons between

the address and data that an AXI master writes/reads in a

burst and the address and data in the slave internal

memory. The components in the scoreboard to buffer the

comparison data are the write/read mailboxes.

Furthermore, the transactions with the same ID must

arrive in the same order that they are issued according to

the AXI protocol and the transactions with different IDs

can arrive in any order, so one mailbox is used for only

one AWID or ARID.

When an AXI master transmits a write burst, it will be

stored in the write mailbox with the same id as the AWID.

When the AXI slave receives the write burst, it will be

International Journal of Electronics and Electrical Engineering Vol. 1, No. 2, June 2013

113©2013 Engineering and Technology Publishing

compared with the one popped from the write mailbox

mentioned above. The read mailbox is used in the similar

way when AXI master transmits a read burst.

E. Simulation Result

Fig. 6 shows a part of the simulation result when a

write burst has been transmitted. A write burst is

transmitted from master 0. And then, the 12 bytes data

should be put into the internal memory in slave 0 from

address 99cc to 99d7. If the 12 bytes data from master 0

and these in the internal memory of slave 0 are the same

after master 0 receives the OKAY write response, the

write burst transmittance is considered to be successful.

Master 0 has transmitted a write burst

 ID : 3

 ADDR : 99cc

 burst_len : 5

 burst_size : 1

 burst_type : INCR

 The write data :

 0 : 6 1 : a5 2 : 9a 3 : 69 4 : 44 5 : ae 6 : f0 7 : dc 8 : cf 9 : 27 10 : 38 11 : 24

Slave 0 has received a write burst

 ID : 3

 ADDR : 99cc

 burst_len : 5

 burst_size : 1

 burst_type : INCR

 The data in the slave from addr 99cc :

 0 : 6 1 : a5 2 : 9a 3 : 69 4 : 44 5 : ae 6 : f0 7 : dc 8 : cf 9 : 27 10 : 38 11 : 24

Master 0 has received an OKAY write response

The write burst has transmitted successfully!

Figure 6. A part of the simulation result

IV. SUMMARY

In this paper, an effective verification environment for

AXI bus is developed with SystemVerilog. The proposed

multi-layer testbench is comprised of AXI master, AXI

slave, assertions, scoreboard and coverage analysis. With

the help of the components mentioned above, the

verification environment can simulate most cases of the

AXI signal, check all the transmitted data automatically

and complete coverage analysis during the simulation. So

the environment can improve the coverage and reduce the

time spending in the verification.

REFERENCES

[1] L. Tao, X. Tong, Z. Yang, L. Huawei, and L. Xiaowei, "Bug

analysis and corresponding error models in real designs," in IEEE

International High Level Design Validation and Test Workshop,
2007, pp. 59-64.

[2] K. Han, Z. Deng, and Q. Shu, "Verification of AMBA bus model

using systemverilog," in Proc. 8th International Conference on
Electronic Measurement and Instruments, 2007, pp. 1-776-1-780.

[3] AMBA AXI Protocol Version: 2.0 Specification, ARM Ltd, pp.

1-1
[4] A. Hazra, A. Banerjee, S. Mitra, P. Dasgupta, P. P. Chakrabarti,

and C. R. Mohan, "Cohesive coverage management for simulation
and formal property verification," in IEEE Computer Society

Annual Symposium on VLSI, 2008, pp. 251-256.

[5] C. Spear, “A Guide to Learning the Testbench Language Features,”

in SystemVerilog for Verification, 2nd ed., Springer Publishing

Company, Incorporated, 2008, pp. 11-18.

Xu Chen received the B.S. degree from The School

of Electronics Engineering and Computer Science,

Peking University, Beijing, in 2010. He is currently
pursuing the master degree in school of electronics

engineering and computer science, Peking University.

He is now engaged in the verification methodology at
school of electronic and computer engineering,

Shenzhen.

His current research interests include IC design and verification.

Zheng Xie received the B.S. degree from Kunming

University of Science and Technology, Kunming,
Yunnan, in 2008. He is currently pursuing the Ph.D.

degree in school of electronics engineering and

computer science, Peking University. He is now
engaged in the operator design and verification

methodology and verification expert system (VES)

at school of electronic and computer engineering, Shenzhen.
His current research interests include IC design and verification,

computer-aided design tool development.

Xin-an Wang is the professor of Peking University.

He is the vice-president of the school of electronic
and computer engineering, Peking University.

His current research interests include IC design,

health monitoring and food safety inspection.

International Journal of Electronics and Electrical Engineering Vol. 1, No. 2, June 2013

114©2013 Engineering and Technology Publishing

